Skip to main content

Cardiac KATP Channels in Health and Diseases

  • Chapter
  • First Online:
Electrical Diseases of the Heart

Abstract

Adenosine triphosphate (ATP)-sensitive K+ (KATP) channels were discovered in the heart almost 30 years ago. They are present in multiple tissues and link membrane excitability to the metabolic state of the cell. Under physiological conditions, cardiac KATP channels are predominantly closed, but they may open during exertion, stress, and ischemia. Experimental and modeling studies have shown that activation of sarcolemmal KATP channels causes dramatic action potential shortening in vitro, which can be cardioprotective. Conversely, there is emerging evidence that KATP channel mutations are linked to heart diseases, including congestive heart failure and arrhythmias. The debate regarding the role, and even the very existence, of mitochondrial KATP channels is still ongoing. Filling these knowledge gaps will require further study, and integration of results from basic cellular electrophysiology, to animal models and clinical disease. This chapter will address the current understanding of cardiac KATP channels regarding molecular composition, regulation of channel activity, and physiological and pathophysiological roles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zingman LV, Zhu Z, Sierra A, Stepniak E, Burnett CM, Maksymov G, et al. Exercise-induced expression of cardiac ATP-sensitive potassium channels promotes action potential shortening and energy conservation. J Mol Cell Cardiol. 2011;51(1):72–81.

    Article  PubMed  CAS  Google Scholar 

  2. Kane GC, Behfar A, Yamada S, Perez-Terzic C, O’Cochlain F, Reyes S, et al. ATP-sensitive K+ channel knockout compromises the metabolic benefit of exercise training, resulting in cardiac deficits. Diabetes. 2004;53 Suppl 3:S169–75.

    Article  PubMed  CAS  Google Scholar 

  3. Zingman LV, Hodgson DM, Bast PH, Kane GC, Perez-Terzic C, Gumina RJ, et al. Kir6.2 is required for adaptation to stress. Proc Natl Acad Sci U S A. 2002;99(20):13278–83.

    Article  PubMed  CAS  Google Scholar 

  4. Flagg TP, Enkvetchakul D, Koster JC, Nichols CG. Muscle KATP channels: recent insights to energy sensing and myoprotection. Physiol Rev. 2010;90(3):799–829.

    Article  PubMed  CAS  Google Scholar 

  5. Reyes S, Park S, Johnson BD, Terzic A, Olson TM. KATP channel Kir6.2 E23K variant overrepresented in human heart failure is associated with impaired exercise stress response. Hum Genet. 2009;126(6):779–89.

    Article  PubMed  CAS  Google Scholar 

  6. Haissaguerre M, Chatel S, Sacher F, Weerasooriya R, Probst V, Loussouarn G, et al. Ventricular fibrillation with prominent early repolarization associated with a rare variant of KCNJ8/KATP channel. J Cardiovasc Electrophysiol. 2009;20(1):93–8.

    Article  PubMed  Google Scholar 

  7. Medeiros-Domingo A, Tan BH, Crotti L, Tester DJ, Eckhardt L, Cuoretti A, et al. Gain-of-function mutation S422L in the KCNJ8-encoded cardiac K(ATP) channel Kir6.1 as a pathogenic substrate for J-wave syndromes. Heart Rhythm. 2010;7(10):1466–71.

    Article  PubMed  Google Scholar 

  8. Barajas-Martinez H, Hu D, Ferrer T, Onetti CG, Wu Y, Burashnikov E, et al. Molecular Genetic and functional association of Brugada and early repolarization syndromes with S422L missense mutation in KCNJ8. Heart Rhythm. 2012;9(4):548–55.

    Article  PubMed  Google Scholar 

  9. Kane GC, Liu XK, Yamada S, Olson TM, Terzic A. Cardiac KATP channels in health and disease. J Mol Cell Cardiol. 2005;38(6):937–43.

    Article  PubMed  CAS  Google Scholar 

  10. Baczko I, Husti Z, Lang V, Lepran I, Light PE. Sarcolemmal KATP channel modulators and cardiac arrhythmias. Curr Med Chem. 2011;18(24):3640–61.

    Article  PubMed  CAS  Google Scholar 

  11. Zhang H, Flagg TP, Nichols CG. Cardiac sarcolemmal K(ATP) channels: latest twists in a questing tale! J Mol Cell Cardiol. 2010;48(1):71–5.

    Article  PubMed  CAS  Google Scholar 

  12. Nichols CG, Lederer WJ. Adenosine triphosphate-sensitive potassium channels in the cardiovascular system. Am J Physiol. 1991;261(6 Pt 2):H1675–86.

    PubMed  CAS  Google Scholar 

  13. Terzic A, Jahangir A, Kurachi Y. Cardiac ATP-sensitive K+ channels: regulation by intracellular nucleotides and K+ channel-opening drugs. Am J Physiol. 1995;269(3 Pt 1):C525–45.

    PubMed  CAS  Google Scholar 

  14. Nichols CG. KATP channels as molecular sensors of cellular metabolism. Nature. 2006;440(7083):470–6.

    Article  PubMed  CAS  Google Scholar 

  15. Inagaki N, Gonoi T, Clement JP, Namba N, Inazawa J, Gonzalez G, et al. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science. 1995;270(5239):1166–70.

    Article  PubMed  CAS  Google Scholar 

  16. Inagaki N, Tsuura Y, Namba N, Masuda K, Gonoi T, Horie M, et al. Cloning and functional characterization of a novel ATP-sensitive potassium channel ubiquitously expressed in rat tissues, including pancreatic islets, pituitary, skeletal muscle, and heart. J Biol Chem. 1995;270(11):5691–4.

    Article  PubMed  CAS  Google Scholar 

  17. Aguilar-Bryan L, Nichols CG, Wechsler SW, Clement JP, Boyd 3rd AE, Gonzalez G, et al. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science. 1995;268(5209):423–6.

    Article  PubMed  CAS  Google Scholar 

  18. Chutkow WA, Makielski JC, Nelson DJ, Burant CF, Fan Z. Alternative splicing of sur2 Exon 17 regulates nucleotide sensitivity of the ATP-sensitive potassium channel. J Biol Chem. 1999;274(19):13656–65.

    Article  PubMed  CAS  Google Scholar 

  19. Shi NQ, Ye B, Makielski JC. Function and distribution of the SUR isoforms and splice variants. J Mol Cell Cardiol. 2005;39(1):51–60.

    Article  PubMed  CAS  Google Scholar 

  20. Inagaki N, Inazawa J, Seino S. cDNA sequence, gene structure, and chromosomal localization of the human ATP-sensitive potassium channel, uKATP-1, gene (KCNJ8). Genomics. 1995;30(1):102–4.

    Article  PubMed  CAS  Google Scholar 

  21. Chutkow WA, Simon MC, Le Beau MM, Burant CF. Cloning, tissue expression, and chromosomal localization of SUR2, the putative drug-binding subunit of cardiac, skeletal muscle, and vascular KATP channels. Diabetes. 1996;45(10):1439–45.

    Article  PubMed  CAS  Google Scholar 

  22. Clement JP, Kunjilwar K, Gonzalez G, Schwanstecher M, Panten U, Aguilar-Bryan L, et al. Association and stoichiometry of K(ATP) channel subunits. Neuron. 1997;18(5):827–38.

    Article  PubMed  CAS  Google Scholar 

  23. Shyng S, Nichols CG. Octameric stoichiometry of the KATP channel complex. J Gen Physiol. 1997;110(6):655–64.

    Article  PubMed  CAS  Google Scholar 

  24. Heginbotham L, Lu Z, Abramson T, MacKinnon R. Mutations in the K+ channel signature sequence. Biophys J. 1994;66(4):1061–7.

    Article  PubMed  CAS  Google Scholar 

  25. Schwappach B, Zerangue N, Jan YN, Jan LY. Molecular basis for K(ATP) assembly: transmembrane interactions mediate association of a K+ channel with an ABC transporter. Neuron. 2000;26(1):155–67.

    Article  PubMed  CAS  Google Scholar 

  26. Babenko AP, Bryan J. Sur domains that associate with and gate KATP pores define a novel gatekeeper. J Biol Chem. 2003;278(43):41577–80.

    Article  PubMed  CAS  Google Scholar 

  27. Chan KW, Zhang H, Logothetis DE. N-terminal transmembrane domain of the SUR controls trafficking and gating of Kir6 channel subunits. EMBO J. 2003;22(15):3833–43.

    Article  PubMed  CAS  Google Scholar 

  28. Mikhailov MV, Campbell JD, de Wet H, Shimomura K, Zadek B, Collins RF, et al. 3-D structural and functional characterization of the purified KATP channel complex Kir6.2-SUR1. EMBO J. 2005;24(23):4166–75.

    Article  PubMed  CAS  Google Scholar 

  29. Inagaki N, Gonoi T, Clement JP, Wang CZ, Aguilar-Bryan L, Bryan J, et al. A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron. 1996;16(5):1011–7.

    Article  PubMed  CAS  Google Scholar 

  30. Yamada M, Isomoto S, Matsumoto S, Kondo C, Shindo T, Horio Y, et al. Sulphonylurea receptor 2B and Kir6.1 form a sulphonylurea-sensitive but ATP-insensitive K+ channel. J Physiol. 1997;499(Pt 3):715–20.

    PubMed  CAS  Google Scholar 

  31. Kondo C, Repunte VP, Satoh E, Yamada M, Horio Y, Matsuzawa Y, et al. Chimeras of Kir6.1 and Kir6.2 reveal structural elements involved in spontaneous opening and unitary conductance of the ATP-sensitive K+ channels. Receptors Channels. 1998;6(2):129–40.

    PubMed  CAS  Google Scholar 

  32. Babenko AP, Gonzalez G, Aguilar-Bryan L, Bryan J. Reconstituted human cardiac KATP channels: functional identity with the native channels from the sarcolemma of human ventricular cells. Circ Res. 1998;83(11):1132–43.

    Article  PubMed  CAS  Google Scholar 

  33. Lorenz E, Terzic A. Physical association between recombinant cardiac ATP-sensitive K+ channel subunits Kir6.2 and SUR2A. J Mol Cell Cardiol. 1999;31(2):425–34.

    Article  PubMed  CAS  Google Scholar 

  34. Suzuki M, Li RA, Miki T, Uemura H, Sakamoto N, Ohmoto-Sekine Y, et al. Functional roles of cardiac and vascular ATP-sensitive potassium channels clarified by Kir6.2-knockout mice. Circ Res. 2001;88(6):570–7.

    Article  PubMed  CAS  Google Scholar 

  35. Chutkow WA, Samuel V, Hansen PA, Pu J, Valdivia CR, Makielski JC, et al. Disruption of Sur2-containing K(ATP) channels enhances insulin-stimulated glucose uptake in skeletal muscle. Proc Natl Acad Sci U S A. 2001;98(20):11760–4.

    Article  PubMed  CAS  Google Scholar 

  36. Pu J, Wada T, Valdivia C, Chutkow WA, Burant CF, Makielski JC. Evidence of KATP channels in native cardiac cells without SUR. Biophys J. 2001;80:625a–6.

    Google Scholar 

  37. Miki T, Suzuki M, Shibasaki T, Uemura H, Sato T, Yamaguchi K, et al. Mouse model of Prinzmetal angina by disruption of the inward rectifier Kir6.1. Nat Med. 2002;8(5):466–72.

    Article  PubMed  CAS  Google Scholar 

  38. Flagg TP, Kurata HT, Masia R, Caputa G, Magnuson MA, Lefer DJ, et al. Differential structure of atrial and ventricular KATP: atrial KATP channels require SUR1. Circ Res. 2008;103(12):1458–65.

    Article  PubMed  CAS  Google Scholar 

  39. Singh H, Hudman D, Lawrence CL, Rainbow RD, Lodwick D, Norman RI. Distribution of Kir6.0 and SUR2 ATP-sensitive potassium channel subunits in isolated ventricular myocytes. J Mol Cell Cardiol. 2003;35(5):445–59.

    Article  PubMed  CAS  Google Scholar 

  40. van Bever L, Poitry S, Faure C, Norman RI, Roatti A, Baertschi AJ. Pore loop-mutated rat KIR6.1 and KIR6.2 suppress KATP current in rat cardiomyocytes. Am J Physiol Heart Circ Physiol. 2004;287(2):H850–9.

    Article  PubMed  Google Scholar 

  41. Morrissey A, Rosner E, Lanning J, Parachuru L, Dhar Chowdhury P, Han S, et al. Immunolocalization of KATP channel subunits in mouse and rat cardiac myocytes and the coronary vasculature. BMC Physiol. 2005;5(1):1.

    Article  PubMed  CAS  Google Scholar 

  42. Kono Y, Horie M, Takano M, Otani H, Xie LH, Akao M, et al. The properties of the Kir6.1-6.2 tandem channel co-expressed with SUR2A. Pflugers Arch. 2000;440(5):692–8.

    Article  PubMed  CAS  Google Scholar 

  43. Cui Y, Giblin JP, Clapp LH, Tinker A. A mechanism for ATP-sensitive potassium channel diversity: functional coassembly of two pore-forming subunits. Proc Natl Acad Sci U S A. 2001;98(2):729–34.

    Article  PubMed  CAS  Google Scholar 

  44. Chan KW, Wheeler A, Csanady L. Sulfonylurea receptors type 1 and 2A randomly assemble to form heteromeric KATP channels of mixed subunit composition. J Gen Physiol. 2008;131(1):43–58.

    Article  PubMed  CAS  Google Scholar 

  45. Cheng WW, Tong A, Flagg TP, Nichols CG. Random assembly of SUR subunits in K(ATP) channel complexes. Channels (Austin). 2008;2(1):34–8.

    Article  CAS  Google Scholar 

  46. Wheeler A, Wang C, Yang K, Fang K, Davis K, Styer AM, et al. Coassembly of different sulfonylurea receptor subtypes extends the phenotypic diversity of ATP-sensitive potassium (KATP) channels. Mol Pharmacol. 2008;74(5):1333–44.

    Article  PubMed  CAS  Google Scholar 

  47. Seharaseyon J, Sasaki N, Ohler A, Sato T, Fraser H, Johns DC, et al. Evidence against functional heteromultimerization of the KATP channel subunits Kir6.1 and Kir6.2. J Biol Chem. 2000;275(23):17561–5.

    Article  PubMed  CAS  Google Scholar 

  48. Glukhov AV, Flagg TP, Fedorov VV, Efimov IR, Nichols CG. Differential K(ATP) channel pharmacology in intact mouse heart. J Mol Cell Cardiol. 2010;48(1):152–60.

    Article  PubMed  CAS  Google Scholar 

  49. Masia R, Enkvetchakul D, Nichols CG. Differential nucleotide regulation of KATP channels by SUR1 and SUR2A. J Mol Cell Cardiol. 2005;39(3):491–501.

    Article  PubMed  CAS  Google Scholar 

  50. Liu Y, Ren G, O’Rourke B, Marban E, Seharaseyon J. Pharmacological comparison of native mitochondrial K(ATP) channels with molecularly defined surface K(ATP) channels. Mol Pharmacol. 2001;59(2):225–30.

    PubMed  CAS  Google Scholar 

  51. Ashcroft FM, Gribble FM. Tissue-specific effects of sulfonylureas: lessons from studies of cloned K(ATP) channels. J Diabetes Complications. 2000;14(4):192–6.

    Article  PubMed  CAS  Google Scholar 

  52. Han X, Light PE, Giles WR, French RJ. Identification and properties of an ATP-sensitive K+ current in rabbit sino-atrial node pacemaker cells. J Physiol. 1996;490(Pt 2):337–50.

    PubMed  CAS  Google Scholar 

  53. Kakei M, Noma A. Adenosine-5’-triphosphate-sensitive single potassium channel in the atrioventricular node cell of the rabbit heart. J Physiol. 1984;352:265–84.

    PubMed  CAS  Google Scholar 

  54. Light PE, Cordeiro JM, French RJ. Identification and properties of ATP-sensitive potassium channels in myocytes from rabbit Purkinje fibres. Cardiovasc Res. 1999;44(2):356–69.

    Article  PubMed  CAS  Google Scholar 

  55. Bao L, Kefalogianni E, Lader J, Hong M, Morley G, Fishman GI, et al. Unique properties of the ATP-sensitive K+ channel in the mouse ventricular cardiac conduction system. Circulation. 2011;4(6):926–35.

    PubMed  CAS  Google Scholar 

  56. Marionneau C, Couette B, Liu J, Li H, Mangoni ME, Nargeot J, et al. Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart. J Physiol. 2005;562(Pt 1):223–34.

    PubMed  CAS  Google Scholar 

  57. Fukuzaki K, Sato T, Miki T, Seino S, Nakaya H. Role of sarcolemmal ATP-sensitive K+ channels in the regulation of sinoatrial node automaticity: an evaluation using Kir6.2-deficient mice. J Physiol. 2008;586(Pt 11):2767–78.

    Article  PubMed  CAS  Google Scholar 

  58. Fedorov VV, Glukhov AV, Ambrosi CM, Kostecki G, Chang R, Janks D, et al. Effects of K(ATP) channel openers diazoxide and pinacidil in coronary-perfused atria and ventricles from failing and non-failing human hearts. J Mol Cell Cardiol. 2011;51(2):215–25.

    Article  PubMed  CAS  Google Scholar 

  59. Noma A. ATP-regulated K+ channels in cardiac muscle. Nature. 1983;305(5930):147–8.

    Article  PubMed  CAS  Google Scholar 

  60. Lederer WJ, Nichols CG. Nucleotide modulation of the activity of rat heart ATP-sensitive K+ channels in isolated membrane patches. J Physiol. 1989;419:193–211.

    PubMed  CAS  Google Scholar 

  61. Nichols CG, Lederer WJ. The regulation of ATP-sensitive K+ channel activity in intact and permeabilized rat ventricular myocytes. J Physiol. 1990;423:91–110.

    PubMed  CAS  Google Scholar 

  62. Findlay I, Faivre JF. ATP-sensitive K channels in heart muscle. Spare channels. FEBS Lett. 1991;279(1):95–7.

    Article  PubMed  CAS  Google Scholar 

  63. Terzic A, Tung RT, Kurachi Y. Nucleotide regulation of ATP sensitive potassium channels. Cardiovasc Res. 1994;28(6):746–53.

    Article  PubMed  CAS  Google Scholar 

  64. Tucker SJ, Gribble FM, Zhao C, Trapp S, Ashcroft FM. Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature. 1997;387(6629):179–83.

    Article  PubMed  CAS  Google Scholar 

  65. Satoh E, Yamada M, Kondo C, Repunte VP, Horio Y, Iijima T, et al. Intracellular nucleotide-mediated gating of SUR/Kir6.0 complex potassium channels expressed in a mammalian cell line and its modification by pinacidil. J Physiol. 1998;511(Pt 3):663–74.

    Article  PubMed  CAS  Google Scholar 

  66. Schwanstecher M, Sieverding C, Dorschner H, Gross I, Aguilar-Bryan L, Schwanstecher C, et al. Potassium channel openers require ATP to bind to and act through sulfonylurea receptors. EMBO J. 1998;17(19):5529–35.

    Article  PubMed  CAS  Google Scholar 

  67. Zerangue N, Schwappach B, Jan YN, Jan LY. A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron. 1999;22(3):537–48.

    Article  PubMed  CAS  Google Scholar 

  68. Enkvetchakul D, Nichols CG. Gating mechanism of KATP channels: function fits form. J Gen Physiol. 2003;122(5):471–80.

    Article  PubMed  CAS  Google Scholar 

  69. John SA, Weiss JN, Xie LH, Ribalet B. Molecular mechanism for ATP-dependent closure of the K+ channel Kir6.2. J Physiol. 2003;552(Pt 1):23–34.

    Article  PubMed  CAS  Google Scholar 

  70. Ribalet B, John SA, Weiss JN. Molecular basis for Kir6.2 channel inhibition by adenine nucleotides. Biophys J. 2003;84(1):266–76.

    Article  PubMed  CAS  Google Scholar 

  71. Trapp S, Haider S, Jones P, Sansom MS, Ashcroft FM. Identification of residues contributing to the ATP binding site of Kir6.2. EMBO J. 2003;22(12):2903–12.

    Article  PubMed  CAS  Google Scholar 

  72. Antcliff JF, Haider S, Proks P, Sansom MS, Ashcroft FM. Functional analysis of a structural model of the ATP-binding site of the KATP channel Kir6.2 subunit. EMBO J. 2005;24(2):229–39.

    Article  PubMed  CAS  Google Scholar 

  73. Findlay I. ATP4- and ATP.Mg inhibit the ATP-sensitive K+ channel of rat ventricular myocytes. Pflugers Arch. 1988;412(1–2):37–41.

    PubMed  CAS  Google Scholar 

  74. Jovanovic A, Jovanovic S, Mays DC, Lipsky JJ, Terzic A. Diadenosine 5’,5”-P1, P5-pentaphosphate harbors the properties of a signaling molecule in the heart. FEBS Lett. 1998;423(3):314–8.

    Article  PubMed  CAS  Google Scholar 

  75. Koster JC, Sha Q, Nichols CG. Sulfonylurea and K(+)-channel opener sensitivity of K(ATP) channels. Functional coupling of Kir6.2 and SUR1 subunits. J Gen Physiol. 1999;114(2):203–13.

    Article  PubMed  CAS  Google Scholar 

  76. Nichols CG, Lederer WJ. The mechanism of KATP channel inhibition by ATP. J Gen Physiol. 1991;97(5):1095–8.

    Article  PubMed  CAS  Google Scholar 

  77. Ashcroft FM. Adenosine 5’-triphosphate-sensitive potassium channels. Annu Rev Neurosci. 1988;11:97–118.

    Article  PubMed  CAS  Google Scholar 

  78. Dunne MJ, Petersen OH. Intracellular ADP activates K+ channels that are inhibited by ATP in an insulin-secreting cell line. FEBS Lett. 1986;208(1):59–62.

    Article  PubMed  CAS  Google Scholar 

  79. Kakei M, Kelly RP, Ashcroft SJ, Ashcroft FM. The ATP-sensitivity of K+ channels in rat pancreatic B-cells is modulated by ADP. FEBS Lett. 1986;208(1):63–6.

    Article  PubMed  CAS  Google Scholar 

  80. Findlay I. Effects of ADP upon the ATP-sensitive K+ channel in rat ventricular myocytes. J Membr Biol. 1988;101(1):83–92.

    Article  PubMed  CAS  Google Scholar 

  81. Hopkins WF, Fatherazi S, Peter-Riesch B, Corkey BE, Cook DL. Two sites for adenine-­nucleotide regulation of ATP-sensitive potassium channels in mouse pancreatic beta-cells and HIT cells. J Membr Biol. 1992;129(3):287–95.

    PubMed  CAS  Google Scholar 

  82. Shyng S, Ferrigni T, Nichols CG. Regulation of KATP channel activity by diazoxide and MgADP. Distinct functions of the two nucleotide binding folds of the sulfonylurea receptor. J Gen Physiol. 1997;110(6):643–54.

    Article  PubMed  CAS  Google Scholar 

  83. Moreau C, Jacquet H, Prost AL, D’Hahan N, Vivaudou M. The molecular basis of the specificity of action of K(ATP) channel openers. EMBO J. 2000;19(24):6644–51.

    Article  PubMed  CAS  Google Scholar 

  84. John SA, Weiss JN, Ribalet B. Regulation of cloned ATP-sensitive K channels by adenine nucleotides and sulfonylureas: interactions between SUR1 and positively charged domains on Kir6.2. J Gen Physiol. 2001;118(4):391–405.

    Article  PubMed  CAS  Google Scholar 

  85. Matsushita K, Kinoshita K, Matsuoka T, Fujita A, Fujikado T, Tano Y, et al. Intramolecular interaction of SUR2 subtypes for intracellular ­ADP-induced differential control of K(ATP) channels. Circ Res. 2002;90(5):554–61.

    Article  PubMed  CAS  Google Scholar 

  86. Campbell JD, Sansom MS, Ashcroft FM. Potassium channel regulation. EMBO Rep. 2003;4(11):1038–42.

    Article  PubMed  CAS  Google Scholar 

  87. Gribble FM, Tucker SJ, Haug T, Ashcroft FM. MgATP activates the beta cell KATP channel by interaction with its SUR1 subunit. Proc Natl Acad Sci U S A. 1998;95(12):7185–90.

    Article  PubMed  CAS  Google Scholar 

  88. D’Hahan N, Jacquet H, Moreau C, Catty P, Vivaudou M. A transmembrane domain of the sulfonylurea receptor mediates activation of ATP-sensitive K(+) channels by K(+) channel openers. Mol Pharmacol. 1999;56(2):308–15.

    PubMed  Google Scholar 

  89. Gribble FM, Tucker SJ, Ashcroft FM. The essential role of the Walker A motifs of SUR1 in K-ATP channel activation by Mg-ADP and diazoxide. EMBO J. 1997;16(6):1145–52.

    Article  PubMed  CAS  Google Scholar 

  90. Matsuo M, Trapp S, Tanizawa Y, Kioka N, Amachi T, Oka Y, et al. Functional analysis of a mutant sulfonylurea receptor, SUR1-R1420C, that is responsible for persistent hyperinsulinemic hypoglycemia of infancy. J Biol Chem. 2000;275(52):41184–91.

    Article  PubMed  CAS  Google Scholar 

  91. Matsuo M, Tanabe K, Kioka N, Amachi T, Ueda K. Different binding properties and affinities for ATP and ADP among sulfonylurea receptor subtypes, SUR1, SUR2A, and SUR2B. J Biol Chem. 2000;275(37):28757–63.

    Article  PubMed  CAS  Google Scholar 

  92. Matsuoka T, Matsushita K, Katayama Y, Fujita A, Inageda K, Tanemoto M, et al. C-terminal tails of sulfonylurea receptors control ADP-induced activation and diazoxide modulation of ATP-sensitive K(+) channels. Circ Res. 2000;87(10):873–80.

    Article  PubMed  CAS  Google Scholar 

  93. Ueda K, Inagaki N, Seino S. MgADP antagonism to Mg2+−independent ATP binding of the sulfonylurea receptor SUR1. J Biol Chem. 1997;272(37):22983–6.

    Article  PubMed  CAS  Google Scholar 

  94. Babenko AP, Gonzalez G, Bryan J. Pharmaco-topology of sulfonylurea receptors. Separate domains of the regulatory subunits of K(ATP) channel isoforms are required for selective interaction with K(+) channel openers. J Biol Chem. 2000;275(2):717–20.

    Article  PubMed  CAS  Google Scholar 

  95. Bryan J, Aguilar-Bryan L. Sulfonylurea receptors: ABC transporters that regulate ATP-sensitive K(+) channels. Biochim Biophys Acta. 1999;1461(2):285–303.

    Article  PubMed  CAS  Google Scholar 

  96. Seino S. ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu Rev Physiol. 1999;61:337–62.

    Article  PubMed  CAS  Google Scholar 

  97. Bienengraeber M, Alekseev AE, Abraham MR, Carrasco AJ, Moreau C, Vivaudou M, et al. ATPase activity of the sulfonylurea receptor: a catalytic function for the KATP channel complex. FASEB J. 2000;14(13):1943–52.

    Article  PubMed  CAS  Google Scholar 

  98. Matsuo M, Kioka N, Amachi T, Ueda K. ATP binding properties of the nucleotide-binding folds of SUR1. J Biol Chem. 1999;274(52):37479–82.

    Article  PubMed  CAS  Google Scholar 

  99. Ashcroft FM, Gribble FM. Correlating structure and function in ATP-sensitive K+ channels. Trends Neurosci. 1998;21(7):288–94.

    Article  PubMed  CAS  Google Scholar 

  100. Ueda K, Komine J, Matsuo M, Seino S, Amachi T. Cooperative binding of ATP and MgADP in the sulfonylurea receptor is modulated by glibenclamide. Proc Natl Acad Sci U S A. 1999;96(4):1268–72.

    Article  PubMed  CAS  Google Scholar 

  101. Masia R, Nichols CG. Functional clustering of ­mutations in the dimer interface of the nucleotide binding folds of the sulfonylurea receptor. J Biol Chem. 2008;283(44):30322–9.

    Article  PubMed  CAS  Google Scholar 

  102. Fan Z, Makielski JC. Anionic phospholipids activate ATP-sensitive potassium channels. J Biol Chem. 1997;272(9):5388–95.

    Article  PubMed  CAS  Google Scholar 

  103. Baukrowitz T, Schulte U, Oliver D, Herlitze S, Krauter T, Tucker SJ, et al. PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science. 1998;282(5391):1141–4.

    Article  PubMed  CAS  Google Scholar 

  104. Shyng SL, Nichols CG. Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science. 1998;282(5391):1138–41.

    Article  PubMed  CAS  Google Scholar 

  105. Ribalet B, John SA, Xie LH, Weiss JN. Regulation of the ATP-sensitive K channel Kir6.2 by ATP and PIP(2). J Mol Cell Cardiol. 2005;39(1):71–7.

    Article  PubMed  CAS  Google Scholar 

  106. Xie LH, John SA, Ribalet B, Weiss JN. Phosphati­dylinositol-4,5-bisphosphate (PIP2) regulation of strong inward rectifier Kir2.1 channels: multilevel positive cooperativity. J Physiol. 2008;586(7):1833–48.

    Article  PubMed  CAS  Google Scholar 

  107. Fan Z, Makielski JC. Phosphoinositides decrease ATP sensitivity of the cardiac ATP-sensitive K(+) channel. A molecular probe for the mechanism of ATP-sensitive inhibition. J Gen Physiol. 1999;114(2):251–69.

    Article  PubMed  CAS  Google Scholar 

  108. MacGregor GG, Dong K, Vanoye CG, Tang L, Giebisch G, Hebert SC. Nucleotides and phospholipids compete for binding to the C terminus of KATP channels. Proc Natl Acad Sci U S A. 2002;99(5):2726–31.

    Article  PubMed  CAS  Google Scholar 

  109. Haider S, Tarasov AI, Craig TJ, Sansom MS, Ashcroft FM. Identification of the PIP2-binding site on Kir6.2 by molecular modelling and functional analysis. EMBO J. 2007;26(16):3749–59.

    Article  PubMed  CAS  Google Scholar 

  110. Loussouarn G, Pike LJ, Ashcroft FM, Makhina EN, Nichols CG. Dynamic sensitivity of ATP-sensitive K(+) channels to ATP. J Biol Chem. 2001;276(31):29098–103.

    Article  PubMed  CAS  Google Scholar 

  111. Hansen SB, Tao X, MacKinnon R. Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature. 2011;477(7365):495–8.

    Article  PubMed  CAS  Google Scholar 

  112. Shyng SL, Cukras CA, Harwood J, Nichols CG. Structural determinants of PIP(2) regulation of inward rectifier K(ATP) channels. J Gen Physiol. 2000;116(5):599–608.

    Article  PubMed  CAS  Google Scholar 

  113. Cukras CA, Jeliazkova I, Nichols CG. Structural and functional determinants of conserved lipid ­interaction domains of inward rectifying Kir6.2 channels. J Gen Physiol. 2002;119(6):581–91.

    Article  PubMed  CAS  Google Scholar 

  114. Cukras CA, Jeliazkova I, Nichols CG. The role of NH2-terminal positive charges in the activity of inward rectifier KATP channels. J Gen Physiol. 2002;120(3):437–46.

    Article  PubMed  CAS  Google Scholar 

  115. Larsson O, Deeney JT, Branstrom R, Berggren PO, Corkey BE. Activation of the ATP-sensitive K+ channel by long chain acyl-CoA. A role in modulation of pancreatic beta-cell glucose sensitivity. J Biol Chem. 1996;271(18):10623–6.

    Article  PubMed  CAS  Google Scholar 

  116. Branstrom R, Corkey BE, Berggren PO, Larsson O. Evidence for a unique long chain acyl-CoA ester binding site on the ATP-regulated potassium channel in mouse pancreatic beta cells. J Biol Chem. 1997;272(28):17390–4.

    Article  PubMed  CAS  Google Scholar 

  117. Branstrom R, Leibiger IB, Leibiger B, Corkey BE, Berggren PO, Larsson O. Long chain coenzyme A esters activate the pore-forming subunit (Kir6.2) of the ATP-regulated potassium channel. J Biol Chem. 1998;273(47):31395–400.

    Article  PubMed  CAS  Google Scholar 

  118. Gribble FM, Proks P, Corkey BE, Ashcroft FM. Mechanism of cloned ATP-sensitive potassium channel activation by oleoyl-CoA. J Biol Chem. 1998;273(41):26383–7.

    Article  PubMed  CAS  Google Scholar 

  119. Liu GX, Hanley PJ, Ray J, Daut J. Long-chain acyl-coenzyme A esters and fatty acids directly link metabolism to K(ATP) channels in the heart. Circ Res. 2001;88(9):918–24.

    Article  PubMed  CAS  Google Scholar 

  120. Schulze D, Rapedius M, Krauter T, Baukrowitz T. Long-chain acyl-CoA esters and phosphatidylinositol phosphates modulate ATP inhibition of KATP channels by the same mechanism. J Physiol. 2003;552(Pt 2):357–67.

    Article  PubMed  CAS  Google Scholar 

  121. Branstrom R, Aspinwall CA, Valimaki S, Ostensson CG, Tibell A, Eckhard M, et al. Long-chain CoA esters activate human pancreatic beta-cell KATP channels: potential role in type 2 diabetes. Diabetologia. 2004;47(2):277–83.

    Article  PubMed  CAS  Google Scholar 

  122. Manning Fox JE, Nichols CG, Light PE. Activation of adenosine triphosphate-sensitive potassium channels by acyl coenzyme A esters involves multiple phosphatidylinositol 4,5-bisphosphate-interacting residues. Mol Endocrinol. 2004;18(3):679–86.

    Article  PubMed  CAS  Google Scholar 

  123. Branstrom R, Leibiger IB, Leibiger B, Klement G, Nilsson J, Arhem P, et al. Single residue (K332A) substitution in Kir6.2 abolishes the stimulatory effect of long-chain acyl-CoA esters: indications for a long-chain acyl-CoA ester binding motif. Diabetologia. 2007;50(8):1670–7.

    Article  PubMed  CAS  Google Scholar 

  124. Bienengraeber M, Olson TM, Selivanov VA, Kathmann EC, O’Cochlain F, Gao F, et al. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Nat Genet. 2004;36(4):382–7.

    Article  PubMed  CAS  Google Scholar 

  125. Weiss JN, Lamp ST. Glycolysis preferentially inhibits ATP-sensitive K+ channels in isolated guinea pig cardiac myocytes. Science. 1987;238(4823):67–9.

    Article  PubMed  CAS  Google Scholar 

  126. Weiss JN, Venkatesh N. Metabolic regulation of cardiac ATP-sensitive K+ channels. Cardiovasc Drugs Ther. 1993;7 Suppl 3:499–505.

    Article  PubMed  Google Scholar 

  127. Hong M, Kefaloyianni E, Bao L, Malester B, Delaroche D, Neubert TA, et al. Cardiac ATP-sensitive K+ channel associates with the glycolytic enzyme complex. FASEB J. 2011;25(7):2456–67.

    Article  PubMed  CAS  Google Scholar 

  128. Weiss JN, Lamp ST. Cardiac ATP-sensitive K+ channels. Evidence for preferential regulation by glycolysis. J Gen Physiol. 1989;94(5):911–35.

    Article  PubMed  CAS  Google Scholar 

  129. Dzeja PP, Terzic A. Phosphotransfer reactions in the regulation of ATP-sensitive K+ channels. FASEB J. 1998;12(7):523–9.

    PubMed  CAS  Google Scholar 

  130. Alekseev AE, Hodgson DM, Karger AB, Park S, Zingman LV, Terzic A. ATP-sensitive K+ channel channel/enzyme multimer: metabolic gating in the heart. J Mol Cell Cardiol. 2005;38(6):895–905.

    Article  PubMed  CAS  Google Scholar 

  131. Beguin P, Nagashima K, Nishimura M, Gonoi T, Seino S. PKA-mediated phosphorylation of the human K(ATP) channel: separate roles of Kir6.2 and SUR1 subunit phosphorylation. EMBO J. 1999;18(17):4722–32.

    Article  PubMed  CAS  Google Scholar 

  132. Lin YF, Jan YN, Jan LY. Regulation of ATP-sensitive potassium channel function by protein kinase A-mediated phosphorylation in transfected HEK293 cells. EMBO J. 2000;19(5):942–55.

    Article  PubMed  CAS  Google Scholar 

  133. Light PE, Bladen C, Winkfein RJ, Walsh MP, French RJ. Molecular basis of protein kinase C-induced activation of ATP-sensitive potassium channels. Proc Natl Acad Sci U S A. 2000;97(16):9058–63.

    Article  PubMed  CAS  Google Scholar 

  134. Carrasco AJ, Dzeja PP, Alekseev AE, Pucar D, Zingman LV, Abraham MR, et al. Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels. Proc Natl Acad Sci U S A. 2001;98(13):7623–8.

    Article  PubMed  CAS  Google Scholar 

  135. Crawford RM, Ranki HJ, Botting CH, Budas GR, Jovanovic A. Creatine kinase is physically associated with the cardiac ATP-sensitive K+ channel in vivo. FASEB J. 2002;16(1):102–4.

    PubMed  CAS  Google Scholar 

  136. Jovanovic S, Jovanovic A. High glucose regulates the activity of cardiac sarcolemmal ATP-sensitive K+ channels via 1,3-bisphosphoglycerate: a novel link between cardiac membrane excitability and glucose metabolism. Diabetes. 2005;54(2):383–93.

    Article  PubMed  CAS  Google Scholar 

  137. Dhar-Chowdhury P, Harrell MD, Han SY, Jankowska D, Parachuru L, Morrissey A, et al. The glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase, triose-phosphate isomerase, and pyruvate kinase are components of the K(ATP) channel macromolecular complex and regulate its function. J Biol Chem. 2005;280(46):38464–70.

    Article  PubMed  CAS  Google Scholar 

  138. Thierfelder S, Doepner B, Gebhardt C, Hirche H, Benndorf K. ATP-sensitive K+ channels in heart muscle cells first open and subsequently close at maintained anoxia. FEBS Lett. 1994;351(3):365–9.

    Article  PubMed  CAS  Google Scholar 

  139. Jaburek M, Yarov-Yarovoy V, Paucek P, Garlid KD. State-dependent inhibition of the mitochondrial KATP channel by glyburide and 5-hydroxydecanoate. J Biol Chem. 1998;273(22):13578–82.

    PubMed  CAS  Google Scholar 

  140. Rainbow RD, Norman RI, Hudman D, Davies NW, Standen NB. Reduced effectiveness of HMAR 1098 in blocking cardiac sarcolemmal K(ATP) channels during metabolic stress. J Mol Cell Cardiol. 2005;39(4):637–46.

    Article  PubMed  CAS  Google Scholar 

  141. Zhang HX, Akrouh A, Kurata HT, Remedi MS, Lawton JS, Nichols CG. HMAR 1098 is not an SUR isotype specific inhibitor of heterologous or sarcolemmal K ATP channels. J Mol Cell Cardiol. 2011;50(3):552–60.

    Article  PubMed  CAS  Google Scholar 

  142. Ripoll C, Lederer WJ, Nichols CG. Modulation of ATP-sensitive K+ channel activity and contractile behavior in mammalian ventricle by the potassium channel openers cromakalim and RP49356. J Pharmacol Exp Ther. 1990;255(2):429–35.

    PubMed  CAS  Google Scholar 

  143. Nichols CG, Ripoll C, Lederer WJ. ATP-sensitive potassium channel modulation of the guinea pig ventricular action potential and contraction. Circ Res. 1991;68(1):280–7.

    Article  PubMed  CAS  Google Scholar 

  144. Weiss JN, Venkatesh N, Lamp ST. ATP-sensitive K+ channels and cellular K+ loss in hypoxic and ischaemic mammalian ventricle. J Physiol. 1992;447:649–73.

    PubMed  CAS  Google Scholar 

  145. Shaw RM, Rudy Y. Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration. Cardiovasc Res. 1997;35(2):256–72.

    Article  PubMed  CAS  Google Scholar 

  146. Lederer WJ, Nichols CG, Smith GL. The mechanism of early contractile failure of isolated rat ventricular myocytes subjected to complete metabolic inhibition. J Physiol. 1989;413:329–49.

    PubMed  CAS  Google Scholar 

  147. McPherson CD, Pierce GN, Cole WC. Ischemic cardioprotection by ATP-sensitive K+ channels involves high-energy phosphate preservation. Am J Physiol. 1993;265(5 Pt 2):H1809–18.

    PubMed  CAS  Google Scholar 

  148. Grover GJ, Dzwonczyk S, Sleph PG. Reduction of ischemic damage in isolated rat hearts by the potassium channel opener, RP 52891. Eur J Pharmacol. 1990;191(1):11–8.

    Article  PubMed  CAS  Google Scholar 

  149. Grover GJ, Sleph PG, Dzwonczyk S. Pharmacologic profile of cromakalim in the treatment of myocardial ischemia in isolated rat hearts and anesthetized dogs. J Cardiovasc Pharmacol. 1990;16(6):853–64.

    Article  PubMed  CAS  Google Scholar 

  150. Grover GJ, Garlid KD. ATP-Sensitive potassium channels: a review of their cardioprotective pharmacology. J Mol Cell Cardiol. 2000;32(4):677–95.

    Article  PubMed  CAS  Google Scholar 

  151. Yao Z, Cavero I, Gross GJ. Activation of cardiac KATP channels: an endogenous protective mechanism during repetitive ischemia. Am J Physiol. 1993;264(2 Pt 2):H495–504.

    PubMed  CAS  Google Scholar 

  152. Bernardo NL, D’Angelo M, Okubo S, Joy A, Kukreja RC. Delayed ischemic preconditioning is mediated by opening of ATP-sensitive potassium channels in the rabbit heart. Am J Physiol. 1999;276(4 Pt 2):H1323–30.

    PubMed  CAS  Google Scholar 

  153. Lascano EC, Negroni JA, del Valle HF. Ischemic shortening of action potential duration as a result of KATP channel opening attenuates myocardial stunning by reducing calcium influx. Mol Cell Biochem. 2002;236(1–2):53–61.

    Article  PubMed  CAS  Google Scholar 

  154. Du Q, Jovanovic S, Clelland A, Sukhodub A, Budas G, Phelan K, et al. Overexpression of SUR2A generates a cardiac phenotype resistant to ischemia. FASEB J. 2006;20(8):1131–41.

    Article  PubMed  CAS  Google Scholar 

  155. Rainbow RD, Lodwick D, Hudman D, Davies NW, Norman RI, Standen NB. SUR2A C-terminal fragments reduce KATP currents and ischaemic tolerance of rat cardiac myocytes. J Physiol. 2004;557(Pt 3):785–94.

    Article  PubMed  CAS  Google Scholar 

  156. Suzuki M, Sasaki N, Miki T, Sakamoto N, Ohmoto-Sekine Y, Tamagawa M, et al. Role of sarcolemmal K(ATP) channels in cardioprotection against ischemia/reperfusion injury in mice. J Clin Invest. 2002;109(4):509–16.

    PubMed  CAS  Google Scholar 

  157. Hu X, Xu X, Huang Y, Fassett J, Flagg TP, Zhang Y, et al. Disruption of sarcolemmal ATP-sensitive potassium channel activity impairs the cardiac response to systolic overload. Circ Res. 2008;103(9):1009–17.

    Article  PubMed  CAS  Google Scholar 

  158. Stoller D, Kakkar R, Smelley M, Chalupsky K, Earley JU, Shi NQ, et al. Mice lacking sulfonylurea receptor 2 (SUR2) ATP-sensitive potassium channels are resistant to acute cardiovascular stress. J Mol Cell Cardiol. 2007;43(4):445–54.

    Article  PubMed  CAS  Google Scholar 

  159. Elrod JW, Harrell M, Flagg TP, Gundewar S, Magnuson MA, Nichols CG, et al. Role of sulfonylurea receptor type 1 subunits of ATP-sensitive potassium channels in myocardial ischemia/reperfusion injury. Circulation. 2008;117(11):1405–13.

    Article  PubMed  CAS  Google Scholar 

  160. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124–36.

    Article  PubMed  CAS  Google Scholar 

  161. Gross GJ, Peart JN. KATP channels and myocardial preconditioning: an update. Am J Physiol Heart Circ Physiol. 2003;285(3):H921–30.

    PubMed  CAS  Google Scholar 

  162. Gross GJ, Auchampach JA. Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res. 1992;70(2):223–33.

    Article  PubMed  CAS  Google Scholar 

  163. Rajashree R, Koster JC, Markova KP, Nichols CG, Hofmann PA. Contractility and ischemic response of hearts from transgenic mice with altered sarcolemmal K(ATP) channels. Am J Physiol Heart Circ Physiol. 2002;283(2):H584–90.

    PubMed  CAS  Google Scholar 

  164. Inoue I, Nagase H, Kishi K, Higuti T. ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature. 1991;352(6332):244–7.

    Article  PubMed  CAS  Google Scholar 

  165. Yao Z, Gross GJ. Effects of the KATP channel opener bimakalim on coronary blood flow, monophasic action potential duration, and infarct size in dogs. Circulation. 1994;89(4):1769–75.

    Article  PubMed  CAS  Google Scholar 

  166. Grover GJ, D’Alonzo AJ, Parham CS, Darbenzio RB. Cardioprotection with the KATP opener cromakalim is not correlated with ischemic myocardial action potential duration. J Cardiovasc Pharmacol. 1995;26(1):145–52.

    Article  PubMed  CAS  Google Scholar 

  167. Hamada K, Yamazaki J, Nagao T. Shortening of action potential duration is not prerequisite for cardiac protection by ischemic preconditioning or a KATP channel opener. J Mol Cell Cardiol. 1998;30(7):1369–79.

    Article  PubMed  CAS  Google Scholar 

  168. Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D’Alonzo AJ, et al. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res. 1997;81(6):1072–82.

    Article  PubMed  CAS  Google Scholar 

  169. Baines CP, Liu GS, Birincioglu M, Critz SD, Cohen MV, Downey JM. Ischemic preconditioning depends on interaction between mitochondrial KATP channels and actin cytoskeleton. Am J Physiol. 1999;276(4 Pt 2):H1361–8.

    PubMed  CAS  Google Scholar 

  170. Ghosh S, Standen NB, Galinanes M. Evidence for mitochondrial K ATP channels as effectors of human myocardial preconditioning. Cardiovasc Res. 2000;45(4):934–40.

    Article  PubMed  CAS  Google Scholar 

  171. McCullough JR, Normandin DE, Conder ML, Sleph PG, Dzwonczyk S, Grover GJ. Specific block of the anti-ischemic actions of cromakalim by sodium 5-hydroxydecanoate. Circ Res. 1991;69(4):949–58.

    Article  PubMed  CAS  Google Scholar 

  172. Munch-Ellingsen J, Lokebo JE, Bugge E, Jonassen AK, Ravingerova T, Ytrehus K. 5-HD abolishes ischemic preconditioning independently of monophasic action potential duration in the heart. Basic Res Cardiol. 2000;95(3):228–34.

    Article  PubMed  CAS  Google Scholar 

  173. Rajesh KG, Sasaguri S, Suzuki R, Xing Y, Maeda H. Ischemic preconditioning prevents reperfusion heart injury in cardiac hypertrophy by activation of mitochondrial KATP channels. Int J Cardiol. 2004;96(1):41–9.

    Article  PubMed  Google Scholar 

  174. D’Hahan N, Moreau C, Prost AL, Jacquet H, Alekseev AE, Terzic A, et al. Pharmacological plasticity of cardiac ATP-sensitive potassium channels toward diazoxide revealed by ADP. Proc Natl Acad Sci U S A. 1999;96(21):12162–7.

    Article  PubMed  Google Scholar 

  175. Flagg TP, Remedi MS, Masia R, Gomes J, McLerie M, Lopatin AN, et al. Transgenic overexpression of SUR1 in the heart suppresses sarcolemmal K(ATP). J Mol Cell Cardiol. 2005;39(4):647–56.

    Article  PubMed  CAS  Google Scholar 

  176. Moritani K, Miyazaki T, Miyoshi S, Asanagi M, Zhao LS, Mitamura H, et al. Blockade of ATP-sensitive potassium channels by 5-hydroxydecanoate suppresses monophasic action potential shortening during regional myocardial ischemia. Cardiovasc Drugs Ther. 1994;8(5):749–56.

    Article  PubMed  CAS  Google Scholar 

  177. Hanley PJ, Mickel M, Loffler M, Brandt U, Daut J. K(ATP) channel-independent targets of diazoxide and 5-hydroxydecanoate in the heart. J Physiol. 2002;542(Pt 3):735–41.

    Article  PubMed  CAS  Google Scholar 

  178. Hu H, Sato T, Seharaseyon J, Liu Y, Johns DC, O’Rourke B, et al. Pharmacological and histochemical distinctions between molecularly defined sarcolemmal KATP channels and native cardiac mitochondrial KATP channels. Mol Pharmacol. 1999;55(6):1000–5.

    PubMed  CAS  Google Scholar 

  179. Suzuki M, Saito T, Sato T, Tamagawa M, Miki T, Seino S, et al. Cardioprotective effect of diazoxide is mediated by activation of sarcolemmal but not mitochondrial ATP-sensitive potassium channels in mice. Circulation. 2003;107(5):682–5.

    Article  PubMed  CAS  Google Scholar 

  180. Koster JC, Knopp A, Flagg TP, Markova KP, Sha Q, Enkvetchakul D, et al. Tolerance for ATP-insensitive K(ATP) channels in transgenic mice. Circ Res. 2001;89(11):1022–9.

    Article  PubMed  CAS  Google Scholar 

  181. Foster DB, Rucker JJ, Marban E. Is Kir6.1 a subunit of mitoK(ATP)? Biochem Biophys Res Commun. 2008;366(3):649–56.

    Article  PubMed  CAS  Google Scholar 

  182. Huikuri HV, Castellanos A, Myerburg RJ. Sudden death due to cardiac arrhythmias. N Engl J Med. 2001;345(20):1473–82.

    Article  PubMed  CAS  Google Scholar 

  183. Wilde AA. ATP and the role of IK.ATP during acute myocardial ischemia: controversies revive. Cardiovasc Res. 1997;35(2):181–3.

    Article  PubMed  CAS  Google Scholar 

  184. Billman GE. The cardiac sarcolemmal ATP-sensitive potassium channel as a novel target for anti-arrhythmic therapy. Pharmacol Ther. 2008;120(1):54–70.

    Article  PubMed  CAS  Google Scholar 

  185. Yan GX, Antzelevitch C. Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST-segment elevation. Circulation. 1999;100(15):1660–6.

    Article  PubMed  CAS  Google Scholar 

  186. Di Diego JM, Antzelevitch C. Pinacidil-induced electrical heterogeneity and extrasystolic activity in canine ventricular tissues. Does activation of ATP-regulated potassium current promote phase 2 reentry? Circulation. 1993;88(3):1177–89.

    Article  PubMed  Google Scholar 

  187. Wolleben CD, Sanguinetti MC, Siegl PK. Influence of ATP-sensitive potassium channel modulators on ischemia-induced fibrillation in isolated rat hearts. J Mol Cell Cardiol. 1989;21(8):783–8.

    Article  PubMed  CAS  Google Scholar 

  188. Kantor PF, Coetzee WA, Carmeliet EE, Dennis SC, Opie LH. Reduction of ischemic K+ loss and arrhythmias in rat hearts. Effect of glibenclamide, a sulfonylurea. Circ Res. 1990;66(2):478–85.

    Article  PubMed  CAS  Google Scholar 

  189. Dhein S, Pejman P, Krusemann K. Effects of the I(K.ATP) blockers glibenclamide and HMR1883 on cardiac electrophysiology during ischemia and reperfusion. Eur J Pharmacol. 2000;398(2):273–84.

    Article  PubMed  CAS  Google Scholar 

  190. Shigematsu S, Sato T, Abe T, Saikawa T, Sakata T, Arita M. Pharmacological evidence for the persistent activation of ATP-sensitive K+ channels in early phase of reperfusion and its protective role against myocardial stunning. Circulation. 1995;92(8):2266–75.

    Article  PubMed  CAS  Google Scholar 

  191. Das B, Sarkar C, Karanth KS. Effects of administration of Nicorandil or bimakalim prior to and during ischemia or reperfusion on survival rate, ischemia/reperfusion-induced arrhythmias and infarct size in anesthetized rabbits. Naunyn Schmiedebergs Arch Pharmacol. 2001;364(5):383–96.

    Article  PubMed  CAS  Google Scholar 

  192. Liu XK, Yamada S, Kane GC, Alekseev AE, Hodgson DM, O’Cochlain F, et al. Genetic disruption of Kir6.2, the pore-forming subunit of ­ATP-sensitive K+ channel, predisposes to catecholamine-induced ventricular dysrhythmia. Diabetes. 2004;53 Suppl 3:S165–8.

    Article  PubMed  CAS  Google Scholar 

  193. Flagg TP, Patton B, Masia R, Mansfield C, Lopatin AN, Yamada KA, et al. Arrhythmia susceptibility and premature death in transgenic mice overexpressing both SUR1 and Kir6.2[DeltaN30,K185Q] in the heart. Am J Physiol Heart Circ Physiol. 2007;293(1):H836–45.

    Article  PubMed  CAS  Google Scholar 

  194. Olson TM, Alekseev AE, Moreau C, Liu XK, Zingman LV, Miki T, et al. KATP channel mutation confers risk for vein of Marshall adrenergic atrial fibrillation. Nat Clin Pract Cardiovasc Med. 2007;4(2):110–6.

    Article  PubMed  CAS  Google Scholar 

  195. Niho T, Notsu T, Ishikawa H, Funato H, Yamazaki M, Takahashi H, et al. Study of mechanism and effect of sodium 5-hydroxydecanoate on experimental ischemic ventricular arrhythmia. Nippon Yakurigaku Zasshi. 1987;89(3):155–67.

    Article  PubMed  CAS  Google Scholar 

  196. Friedrichs GS, Abreu JN, Black SC, Chi L, Lucchesi BR. 5-hydroxydecanoate fails to attenuate ventricular fibrillation in a conscious canine model of sudden cardiac death. Eur J Pharmacol. 1996;306(1–3):99–106.

    Article  PubMed  CAS  Google Scholar 

  197. Kita H, Miura T, Tsuchida A, Hasegawa T, Shimamoto K. Suppression of reperfusion arrhythmias by preconditioning is inhibited by an ­ATP-sensitive potassium channel blocker, 5-hydroxydecanoate, but not by protein kinase C blockers in the rat. J Cardiovasc Pharmacol. 1998;32(5):791–7.

    Article  PubMed  CAS  Google Scholar 

  198. Vajda S, Baczko I, Lepran I. Selective cardiac plasma-membrane K(ATP) channel inhibition is defibrillatory and improves survival during acute myocardial ischemia and reperfusion. Eur J Pharmacol. 2007;577(1–3):115–23.

    Article  PubMed  CAS  Google Scholar 

  199. Hart G. Cellular electrophysiology in cardiac hypertrophy and failure. Cardiovasc Res. 1994;28(7):933–46.

    Article  PubMed  CAS  Google Scholar 

  200. Cameron JS, Kimura S, Jackson-Burns DA, Smith DB, Bassett AL. ATP-sensitive K+ channels are altered in hypertrophied ventricular myocytes. Am J Physiol. 1988;255(5 Pt 2):H1254–8.

    PubMed  CAS  Google Scholar 

  201. Yuan F, Brandt NR, Pinto JM, Wasserlauf BJ, Myerburg RJ, Bassett AL. Hypertrophy decreases cardiac KATP channel responsiveness to exogenous and locally generated (glycolytic) ATP. J Mol Cell Cardiol. 1997;29(10):2837–48.

    Article  PubMed  CAS  Google Scholar 

  202. Shimokawa J, Yokoshiki H, Tsutsui H. Impaired activation of ATP-sensitive K+ channels in endocardial myocytes from left ventricular hypertrophy. Am J Physiol Heart Circ Physiol. 2007;293(6):H3643–9.

    Article  PubMed  CAS  Google Scholar 

  203. Yamada S, Kane GC, Behfar A, Liu XK, Dyer RB, Faustino RS, et al. Protection conferred by myocardial ATP-sensitive K+ channels in pressure overload-induced congestive heart failure revealed in KCNJ11 Kir6.2-null mutant. J Physiol. 2006;577(Pt 3):1053–65.

    Article  PubMed  CAS  Google Scholar 

  204. Kane GC, Behfar A, Dyer RB, O’Cochlain DF, Liu XK, Hodgson DM, et al. KCNJ11 gene knockout of the Kir6.2 KATP channel causes maladaptive remodeling and heart failure in hypertension. Hum Mol Genet. 2006;15(15):2285–97.

    Article  PubMed  CAS  Google Scholar 

  205. Koumi SI, Martin RL, Sato R. Alterations in ATP-sensitive potassium channel sensitivity to ATP in failing human hearts. Am J Physiol. 1997;272(4 Pt 2):H1656–65.

    PubMed  CAS  Google Scholar 

  206. Hodgson DM, Zingman LV, Kane GC, Perez-Terzic C, Bienengraeber M, Ozcan C, et al. Cellular remodeling in heart failure disrupts K(ATP) channel-­dependent stress tolerance. EMBO J. 2003;22(8):1732–42.

    Article  PubMed  CAS  Google Scholar 

  207. Villareal DT, Koster JC, Robertson H, Akrouh A, Miyake K, Bell GI, et al. Kir6.2 variant E23K increases ATP-sensitive K+ channel activity and is associated with impaired insulin release and enhanced insulin sensitivity in adults with normal glucose tolerance. Diabetes. 2009;58(8):1869–78.

    Article  PubMed  CAS  Google Scholar 

  208. Reyes S, Terzic A, Mahoney DW, Redfield MM, Rodeheffer RJ, Olson TM. K(ATP) channel polymorphism is associated with left ventricular size in hypertensive individuals: a large-scale community-based study. Hum Genet. 2008;123(6):665–7.

    Article  PubMed  CAS  Google Scholar 

  209. Tester DJ, Tan BH, Medeiros-Domingo A, Song C, Makielski JC, Ackerman MJ. Loss-of-function mutations in the KCNJ8-encoded Kir6.1 K(ATP) channel and sudden infant death syndrome. Circ Cardiovasc Genet. 2011;4(5):510–5.

    Article  PubMed  CAS  Google Scholar 

  210. Koster JC, Permutt MA, Nichols CG. Diabetes and insulin secretion: the ATP-sensitive K+ channel (K ATP) connection. Diabetes. 2005;54(11):3065–72.

    Article  PubMed  CAS  Google Scholar 

  211. Aittoniemi J, Fotinou C, Craig TJ, de Wet H, Proks P, Ashcroft FM. Review. SUR1: a unique ATP-binding cassette protein that functions as an ion channel regulator. Philos Trans R Soc Lond B Biol Sci. 2009;364(1514):257–67.

    Article  PubMed  CAS  Google Scholar 

  212. Ashcroft FM. K(ATP) channels and insulin secretion: a key role in health and disease. Biochem Soc Trans. 2006;34(Pt 2):243–6.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement.

Our own experimental work has been supported by NIH grants HL45742, HL54171 and HL95010. We are grateful to the numerous former laboratory colleagues and collaborators for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin G. Nichols PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Zhang, H.X., Silva, J.R., Nichols, C.G. (2013). Cardiac KATP Channels in Health and Diseases. In: Gussak, I., Antzelevitch, C. (eds) Electrical Diseases of the Heart. Springer, London. https://doi.org/10.1007/978-1-4471-4881-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4881-4_16

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4880-7

  • Online ISBN: 978-1-4471-4881-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics