Skip to main content

Extremely Randomized Trees and Random Subwindows for Image Classification, Annotation, and Retrieval

  • Chapter
Decision Forests for Computer Vision and Medical Image Analysis

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

We present a unified framework involving the extraction of random subwindows within images and the induction of ensembles of extremely randomized trees. We discuss the specialization of this framework for solving several general problems in computer vision, ranging from image classification and segmentation to content-based image retrieval and interest point detection. The methods are illustrated on various applications and datasets from the biomedical domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We restrict our discussion here to numerical features and refer the interested reader to [128] for the treatment of discrete features.

  2. 2.

    Intuitively, as it is less likely a priori that two examples will fall together in a small leaf, it is natural to consider them very similar when they actually do.

References

  1. Blockeel H, De Raedt L, Ramon J (1998) Top-down induction of clustering trees. In: Proc intl conf on machine learning (ICML)

    Google Scholar 

  2. Boland MV, Murphy RF (2001) A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics 17

    Google Scholar 

  3. Boland MV, Markey MK, Murphy RF (1998) Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry 33

    Google Scholar 

  4. Breiman L (2001) Random forests. Mach Learn 45(1)

    Google Scholar 

  5. Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. Chapman and Hall/CRC, London

    Google Scholar 

  6. Brook A, El-Yaniv R, Isler E, Kimmel R, Meir R, Peleg D (2008) Breast cancer diagnosis from biopsy images using generic features and SVMs. Technical Report CS-2008-07, Technion, Israel

    Google Scholar 

  7. Caruana R, Karampatziakis N, Yessenalina A (2008) An empirical evaluation of supervised learning in high dimensions. In: Proc intl conf on machine learning (ICML)

    Google Scholar 

  8. Danuser G (2011) Computer vision in cell biology. Cell 147(5)

    Google Scholar 

  9. Deselaers T, Moller H, Clough P, Ney H, Lehmann TM (2007) The CLEF 2005 automatic medical image annotation task. Int J Comput Vis 74

    Google Scholar 

  10. Donida Labati R, Piuri V, Scotti F (2011) ALL-IDB: the acute lymphoblastic leukemia image database for image processing. In: Proc IEEE intl conference on image processing (ICIP), September 2011

    Google Scholar 

  11. Dumont M, Marée R, Geurts P, Wehenkel L (2009) Fast multi-class image annotation with random subwindows and multiple output randomized trees. In: Proc intl conference on computer vision theory and applications (VISAPP)

    Google Scholar 

  12. Geurts P (2002) Contributions to decision tree induction: bias/variance tradeoff and time series classification. PhD thesis, University of Liège, Belgium, May

    Google Scholar 

  13. Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Mach Learn 36(1)

    Google Scholar 

  14. Geurts P, Marée R, Wehenkel L (2006) Segment and combine: a generic approach for supervised learning of invariant classifiers from topologically structured data. In: Proc of the machine learning conference of Belgium and The Netherlands (Benelearn)

    Google Scholar 

  15. Geurts P, Wehenkel L, d Alché-Buc F (2006) Kernelizing the output of tree-based methods. In: Proc intl conf on machine learning (ICML)

    Google Scholar 

  16. Gray KR, Aljabar P, Heckeman RA, Hammers A, Rueckert D (2011) Random forest-based manifold learning for classification of imaging data in dementia. In: Proc medical image computing and computer assisted intervention (MICCAI)

    Google Scholar 

  17. Keysers D, Dahmen J, Ney H (2001) Invariant classification of red blood cells: a comparison of different approaches. In: Bildverarbeitung fur die Medizin’01

    Google Scholar 

  18. Konukoglu E, Glocker B, Zikic D, Criminisi A (2012) Neighborhood approximation forests. In: Proc medical image computing and computer assisted intervention (MICCAI)

    Google Scholar 

  19. Lepetit V, Fua P (2006) Keypoint recognition using randomized trees. IEEE Trans Pattern Anal Mach Intell

    Google Scholar 

  20. Lezoray O, Elmoataz A, Cardot H (2003) A color object recognition scheme: application to cellular sorting. Mach Vis Appl 14

    Google Scholar 

  21. Li J, Allinson N (2008) A comprehensive review of current local features for computer vision. Neurocomputing 71

    Google Scholar 

  22. Marée R (2012) Towards generic image classification an extensive empirical study. Technical report, University of Liège

    Google Scholar 

  23. Marée R, Geurts P, Visimberga G, Piater J, Wehenkel L (2003) An empirical comparison of machine learning algorithms for generic image classification. In: Coenen F, Preece A, Macintosh AL (eds) Proc of the 23rd SGAI intl conference on innovative techniques and applications of artificial intelligence, research and development in intelligent systems XX. Springer, Berlin

    Google Scholar 

  24. Marée R, Geurts P, Piater J, Wehenkel L (2004) A generic approach for image classification based on decision tree ensembles and local sub-windows. In: Proc Asian conf on computer vision (ACCV), vol 2

    Google Scholar 

  25. Marée R, Geurts P, Piater J, Wehenkel L (2005) Random subwindows for robust image classification. In: Proc IEEE conf computer vision and pattern recognition (CVPR), vol 1. IEEE, New York

    Google Scholar 

  26. Marée R, Geurts P, Wehenkel L (2007) Content-based image retrieval by indexing random subwindows with randomized trees. In: Proc Asian conf on computer vision (ACCV). LNCS, vol 4844. Springer, Berlin

    Google Scholar 

  27. Marée R, Geurts P, Wehenkel L (2007) Random subwindows and extremely randomized trees for image classification in cell biology. Data Mining Inf 8(S1). BMC Cell Biology supplement on Workshop of Multiscale Biological Imaging, July 2007

    Google Scholar 

  28. Marée R, Geurts P, Wehenkel L (2009) Content-based image retrieval by indexing random subwindows with randomized trees. IPSJ Trans Comput Vis Appl 1(1) (open-access)

    Google Scholar 

  29. Marée R, Stevens B, Geurts P, Guern Y, Mack P (2009) A machine learning approach for material detection in hyperspectral images. In: Proc 6th IEEE workshop on object tracking and classification beyond and in the visible spectrum (CVPR09). IEEE, New York

    Google Scholar 

  30. Marée R, Denis P, Wehenkel L, Geurts P (2010) Incremental indexing and distributed image search using shared randomized vocabularies. In: Proc 11th ACM intl conference on multimedia information retrieval (MIR), March 2010. ACM Press, New York

    Google Scholar 

  31. Marée R, Stevens B, Rollus L, Rocks N, Moles-Lopez X, Salmon I, Cataldo D, Wehenkel L (2012) A rich Internet application for remote visualization and collaborative annotation of digital slide images in histology and cytology. In: BMC diagnostic pathology, proc 12th European congress on telepathology and 5th intl congress on virtual microscopy

    Google Scholar 

  32. Moosmann F, Nowak E, Jurie F (2008) Randomized clustering forests for image classification. IEEE Trans Pattern Anal Mach Intell 30(9)

    Google Scholar 

  33. Murphy RF (2011) An active role for machine learning in drug development. Nat Chem Biol 7

    Google Scholar 

  34. Orlov N, Shamir L, Macura T, Johnston J, Eckley DM, Goldberg I (2008) WND-CHARM: multi-purpose image classification using compound transforms. Pattern Recognit Lett 29(11)

    Google Scholar 

  35. Ozuysal M, Fua P, Lepetit V (2007) Fast keypoint recognition in ten lines of code. In: Proc IEEE conf computer vision and pattern recognition (CVPR), June 2007

    Google Scholar 

  36. Pauly O, Mateus D, Navab N (2010) ImageCLEF 2010 working notes on the modality classification subtask. Technical report, Technische Universitat Munchen

    Google Scholar 

  37. Percannella G, Foggia P, Soda P Contest on HEp-2 cells classification. http://mivia.unisa.it/hep2contest/index.shtml

  38. Shamir L, Macura T, Orlov N, Eckely DM, Goldberg IG (2008) IICBU 2008—a benchmark suite for biological imaging. In: 3rd workshop on bio-image informatics: biological imaging, computer vision and data mining

    Google Scholar 

  39. Shamir L, Delaney J, Orlov N, Eckley DM, Goldberg IG (2010) Pattern recognition software and techniques for biological image analysis. PLoS Comput Biol 6(11)

    Google Scholar 

  40. Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, Cambridge

    Google Scholar 

  41. Stern O, Marée R, Aceto J, Jeanray N, Muller M, Wehenkel L, Geurts P (2011) Automatic localization of interest points in zebrafish images with tree-based methods. In: Proc 6th IAPR intl conference on pattern recognition in bioinformatics. Lecture notes in bioinformatics. Springer, Berlin

    Google Scholar 

  42. Williams B, Klein G, Reid I (2007) Real-time SLAM relocalisation. In: Proc IEEE intl conf on computer vision (ICCV)

    Google Scholar 

Download references

Acknowledgements

R.M. is supported by the CYTOMINE research grant (number 1017072) of the Wallonia (DGO6) and by the GIGA center with the help of the Wallonia and the European Regional Development Fund (ERDF). P.G. is a research associate of the FNRS, Belgium.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Marée, R., Wehenkel, L., Geurts, P. (2013). Extremely Randomized Trees and Random Subwindows for Image Classification, Annotation, and Retrieval. In: Criminisi, A., Shotton, J. (eds) Decision Forests for Computer Vision and Medical Image Analysis. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-4929-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4929-3_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4928-6

  • Online ISBN: 978-1-4471-4929-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics