Skip to main content

Abstract

After a brief overview of fuzzy methods in data analysis, this chapter focuses on fuzzy cluster analysis as the oldest fuzzy approach to data analysis. Fuzzy clustering comprises a family of prototype-based clustering methods that can be formulated as the problem of minimizing an objective function. These methods can be seen as “fuzzifications” of, for example, the classical c-means algorithm, which strives to minimize the sum of the (squared) distances between the data points and the cluster centers to which they are assigned. However, in order to “fuzzify” such a crisp clustering approach, it is not enough to merely allow values from the unit interval for the variables encoding the assignments of the data points to the clusters: the minimum is still obtained for a crisp data point assignment. As a consequence, additional means have to be employed in the objective function in order to obtain actual degrees of membership. This chapter surveys the most common fuzzification means and examines and compares their properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • G.H. Ball and D.J. Hall. A Clustering Technique for Summarizing Multivariate Data. Behavioral Science 12(2):153–155. J. Wiley & Sons, Chichester, United Kingdom, 1967

    Article  Google Scholar 

  • H. Bandemer and W. Näther. Fuzzy Data Analysis. Kluwer, Dordrecht, Netherlands, 1992

    Book  MATH  Google Scholar 

  • J.C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York, NY, USA, 1981

    Book  MATH  Google Scholar 

  • J.C. Bezdek and R.J. Hathaway. Visual Cluster Validity (VCV) Displays for Prototype Generator Clustering Methods. Proc. 12th IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE 2003, Saint Louis, MO), 2:875–880. IEEE Press, Piscataway, NJ, USA, 2003

    Chapter  Google Scholar 

  • J.C. Bezdek and N. Pal. Fuzzy Models for Pattern Recognition. IEEE Press, New York, NY, USA, 1992

    Google Scholar 

  • J.C. Bezdek, J.M. Keller, R. Krishnapuram, and N. Pal. Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Kluwer, Dordrecht, Netherlands, 1999

    MATH  Google Scholar 

  • J. Bilmes. A Gentle Tutorial on the EM Algorithm and Its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. Tech. Report ICSI-TR-97-021. University of Berkeley, CA, USA, 1997

    Google Scholar 

  • A. Blanco-Fernández, M.R. Casals, A. Colubi, R. Coppi, N. Corral, S. Rosa de Sáa, P. D’Urso, M.B. Ferraro, M. García-Bárzana, M.A. Gil, P. Giordani, G. González-Rodríguez, M.T. López, M.A. Lubiano, M. Montenegro, T. Nakama, A.B. Ramos-Guajardo, B. Sinova, and W. Trutschnig. Arithmetic and Distance-Based Approach to the Statistical Analysis of Imprecisely Valued Data. In: Borgelt et al. (2013), 1–18

    Google Scholar 

  • C. Borgelt. Prototype-based Classification and Clustering. Habilitationsschrift, Otto-von-Guericke-University of Magdeburg, Germany, 2005

    Google Scholar 

  • C. Borgelt, M.A. Gil, J.M.C. Sousa, and M. Verleysen (eds.). Towards Advanced Data Analysis by Combining Soft Computing and Statistics. Studies in Fuzziness and Soft Computing, vol. 285. Springer-Verlag, Berlin/Heidelberg, Germany, 2013

    MATH  Google Scholar 

  • N. Boujemaa. Generalized Competitive Clustering for Image Segmentation. Proc. 19th Int. Meeting North American Fuzzy Information Processing Society (NAFIPS 2000, Atlanta, GA), 133–137. IEEE Press, Piscataway, NJ, USA, 2000

    Google Scholar 

  • Z. Daróczy. Generalized Information Functions. Information and Control 16(1):36–51. Academic Press, San Diego, CA, USA, 1970

    Article  MathSciNet  MATH  Google Scholar 

  • R.N. Davé and R. Krishnapuram. Robust Clustering Methods: A Unified View. IEEE Transactions on Fuzzy Systems 5(1997):270–293. IEEE Press, Piscataway, NJ, USA, 1997

    Article  Google Scholar 

  • A.P. Dempster, N. Laird and D. Rubin. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B 39:1–38. Blackwell, Oxford, United Kingdom, 1977

    MathSciNet  MATH  Google Scholar 

  • C. Döring, C. Borgelt, and R. Kruse. Effects of Irrelevant Attributes in Fuzzy Clustering. Proc. 14th IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE’05, Reno, NV), 862–866. IEEE Press, Piscataway, NJ, USA, 2005

    Google Scholar 

  • D. Dubois. Statistical Reasoning with set-Valued Information: Ontic vs. Epistemic Views. In: Borgelt et al. (2013), 119–136

    Google Scholar 

  • J.C. Dunn. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. Journal of Cybernetics 3(3):32–57, 1973. American Society for Cybernetics, Washington, DC, USA. Reprinted in Bezdek and Pal (1992), 82–101

    Article  MathSciNet  MATH  Google Scholar 

  • B.S. Everitt. Cluster Analysis. Heinemann, London, United Kingdom, 1981

    Google Scholar 

  • B.S. Everitt and D.J.Hand. Finite Mixture Distributions. Chapman & Hall, London, United Kingdom, 1981

    Book  MATH  Google Scholar 

  • H. Frigui and R. Krishnapuram. Clustering by Competitive Agglomeration. Pattern Recognition 30(7):1109–1119. Pergamon Press, Oxford, United Kingdom, 1997

    Article  Google Scholar 

  • I. Gath and A.B. Geva. Unsupervised Optimal Fuzzy Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 11:773–781, 1989. IEEE Press, Piscataway, NJ, USA. Reprinted in Bezdek and Pal (1992), 211–218

    Article  Google Scholar 

  • E.E. Gustafson and W.C. Kessel. Fuzzy Clustering with a Fuzzy Covariance Matrix. Proc. of the IEEE Conf. on Decision and Control (CDC 1979, San Diego, CA), 761–766. IEEE Press, Piscataway, NJ, USA, 1979. Reprinted in Bezdek and Pal (1992), 117–122

    Google Scholar 

  • J.A. Hartigan and M.A. Wong. A k-Means Clustering Algorithm. Applied Statistics 28:100–108. Blackwell, Oxford, United Kingdom, 1979

    Article  MATH  Google Scholar 

  • K. Honda and H. Ichihashi. Regularized Linear Fuzzy Clustering and Probabilistic PCA Mixture Models. IEEE Transactions on Fuzzy Systems 13(4):508–516. IEEE Press, Piscataway, NJ, USA, 2005

    Article  Google Scholar 

  • F. Höppner, F. Klawonn, R. Kruse, and T. Runkler. Fuzzy Cluster Analysis. J. Wiley & Sons, Chichester, United Kingdom, 1999

    MATH  Google Scholar 

  • E. Hüllermeier. Fuzzy-Methods in Machine Learning and Data Mining: Status and Prospects. Fuzzy Sets and Systems 156(3):387–407. Elsevier, Amsterdam, Netherlands, 2005

    Article  MathSciNet  Google Scholar 

  • E. Hüllermeier. Fuzzy Sets in Machine Learning and Data Mining. Applied Soft Computing 11(2):1493–1505. Elsevier, Amsterdam, Netherlands, 2011

    Article  Google Scholar 

  • H. Ichihashi, K. Miyagishi and K. Honda. Fuzzy c-Means Clustering with Regularization by K-L Information. Proc. 10th IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE 2001, Melbourne, Australia), 924–927. IEEE Press, Piscataway, NJ, USA, 2001

    Google Scholar 

  • A.K. Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs, NJ, USA, 1988

    MATH  Google Scholar 

  • K. Jajuga. L 1-norm Based Fuzzy Clustering. Fuzzy Sets and Systems 39(1):43–50. Elsevier, Amsterdam, Netherlands, 2003

    Article  MathSciNet  Google Scholar 

  • N.B. Karayiannis. MECA: Maximum Entropy Clustering Algorithm. Proc. 3rd IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE 1994, Orlando, FL), I:630–635. IEEE Press, Piscataway, NJ, USA, 1994

    Chapter  Google Scholar 

  • L. Kaufman and P. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis. J. Wiley & Sons, New York, NY, USA, 1990

    Book  Google Scholar 

  • F. Klawonn and F. Höppner. What is Fuzzy about Fuzzy Clustering? Understanding and Improving the Concept of the Fuzzifier. Proc. 5th Int. Symposium on Intelligent Data Analysis (IDA 2003, Berlin, Germany), 254–264. Springer-Verlag, Berlin, Germany, 2003

    Google Scholar 

  • R. Krishnapuram and J.M. Keller. A Possibilistic Approach to Clustering. IEEE Transactions on Fuzzy Systems 1(2):98–110. IEEE Press, Piscataway, NJ, USA, 1993

    Article  Google Scholar 

  • R. Krishnapuram and J.M. Keller. The Possibilistic c-Means Algorithm: Insights and Recommendations. IEEE Transactions on Fuzzy Systems 4(3):385–393. IEEE Press, Piscataway, NJ, USA, 1996

    Article  Google Scholar 

  • R. Kruse. On the Variance of Random Sets. Journal of Mathematical Analysis and Applications 122:469–473. Elsevier, Amsterdam, Netherlands, 1987

    Article  MathSciNet  MATH  Google Scholar 

  • R. Kruse and K.D. Meyer. Statistics with Vague Data. D. Reidel Publishing Company, Dordrecht, Netherlands, 1987

    Book  MATH  Google Scholar 

  • R. Kruse, M.R. Berthold, C. Moewes, M.A. Gil, P. Grzegorzewski, and O. Hryniewicz (eds). Synergies of Soft Computing and Statistics for Intelligent Data Analysis. Advances in Intelligent Systems and Computing, vol. 190. Springer-Verlag, Heidelberg/Berlin, Germany, 2012

    Google Scholar 

  • S. Kullback and R.A. Leibler. On Information and Sufficiency. Annals of Mathematical Statistics 22:79–86. Institute of Mathematical Statistics, Hayward, CA, USA, 1951

    Article  MathSciNet  MATH  Google Scholar 

  • H. Kwakernaak. Fuzzy Random Variables—I. Definitions and Theorems. Information Sciences 15:1–29. Elsevier, Amsterdam, Netherlands, 1978

    Article  MathSciNet  MATH  Google Scholar 

  • H. Kwakernaak. Fuzzy Random Variables—II. Algorithms and Examples for the Discrete Case. Information Sciences 17:252–278. Elsevier, Amsterdam, Netherlands, 1979

    Article  MathSciNet  Google Scholar 

  • R.P. Li and M. Mukaidono. A Maximum Entropy Approach to Fuzzy Clustering. Proc. 4th IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE 1994, Yokohama, Japan), 2227–2232. IEEE Press, Piscataway, NJ, USA, 1995

    Google Scholar 

  • S. Lloyd. Least Squares Quantization in PCM. IEEE Transactions on Information Theory 28:129–137. IEEE Press, Piscataway, NJ, USA, 1982

    Article  MathSciNet  MATH  Google Scholar 

  • S. Miyamoto and M. Mukaidono. Fuzzy c-Means as a Regularization and Maximum Entropy Approach. Proc. 7th Int. Fuzzy Systems Association World Congress (IFSA’97, Prague, Czech Republic), II:86–92, 1997

    Google Scholar 

  • S. Miyamoto and K. Umayahara. Fuzzy Clustering by Quadratic Regularization. Proc. IEEE Int. Conf. on Fuzzy Systems/IEEE World Congress on Computational Intelligence (WCCI 1998, Anchorage, AK), 2:1394–1399. IEEE Press, Piscataway, NJ, USA, 1998

    Google Scholar 

  • Y. Mori, K. Honda, A. Kanda, and H. Ichihashi. A Unified View of Probabilistic PCA and Regularized Linear Fuzzy Clustering. Proc. Int. Joint Conf. on Neural Networks (IJCNN 2003, Portland, OR), I:541–546. IEEE Press, Piscataway, NJ, USA, 2003

    Chapter  Google Scholar 

  • D. Özdemir and L. Akarun. A Fuzzy Algorithm for Color Quantization of Images. Pattern Recognition 35:1785–1791. Pergamon Press, Oxford, United Kingdom, 2002

    Article  MATH  Google Scholar 

  • M. Puri and D. Ralescu. Fuzzy Random Variables. Journal of Mathematical Analysis and Applications 114:409–422. Elsevier, Amsterdam, Netherlands, 1986

    Article  MathSciNet  MATH  Google Scholar 

  • E.H. Ruspini. A New Approach to Clustering. Information and Control 15(1):22–32, 1969. Academic Press, San Diego, CA, USA. Reprinted in Bezdek and Pal (1992), 63–70

    Article  MATH  Google Scholar 

  • C.E. Shannon. The Mathematical Theory of Communication. The Bell System Technical Journal 27:379–423. Bell Laboratories, Murray Hill, NJ, USA, 1948

    MathSciNet  MATH  Google Scholar 

  • H. Timm, C. Borgelt, C. Döring, and R. Kruse. An Extension to Possibilistic Fuzzy Cluster Analysis. Fuzzy Sets and Systems 147:3–16. Elsevier Science, Amsterdam, Netherlands, 2004

    Article  MathSciNet  MATH  Google Scholar 

  • R. Viertl. Statistical Methods for Fuzzy Data. John Wiley & Sons, Chichester, UK, 2011

    Book  MATH  Google Scholar 

  • C. Wei and C. Fahn. The Multisynapse Neural Network and Its Application to Fuzzy Clustering. IEEE Transactions on Neural Networks 13(3):600–618. IEEE Press, Piscataway, NJ, USA, 2002

    Article  Google Scholar 

  • M.S. Yang. On a Class of Fuzzy Classification Maximum Likelihood Procedures. Fuzzy Sets and Systems 57:365–375. Elsevier, Amsterdam, Netherlands, 1993

    Article  MathSciNet  MATH  Google Scholar 

  • M. Yasuda, T. Furuhashi, M. Matsuzaki and S. Okuma. Fuzzy Clustering Using Deterministic Annealing Method and Its Statistical Mechanical Characteristics. Proc. 10th IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE 2001, Melbourne, Australia), 2:797–800. IEEE Press, Piscataway, NJ, USA, 2001

    Google Scholar 

  • J. Yu and M.S. Yang. A Generalized Fuzzy Clustering Regularization Model with Optimality Tests and Model Complexity Analysis. IEEE Transactions on Fuzzy Systems 15(5):904–915. IEEE Press, Piscataway, NJ, USA, 2007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Kruse, R., Borgelt, C., Klawonn, F., Moewes, C., Steinbrecher, M., Held, P. (2013). Fuzzy Clustering. In: Computational Intelligence. Texts in Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-5013-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5013-8_20

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5012-1

  • Online ISBN: 978-1-4471-5013-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics