Skip to main content

Vector Quantisation and Topology Based Graph Representation

  • Chapter
  • First Online:
Graph-Based Clustering and Data Visualization Algorithms

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 3445 Accesses

Abstract

Compact graph based representation of complex data can be used for clustering and visualisation. In this chapter we introduce basic concepts of graph theory and present approaches which may generate graphs from data. Computational complexity of clustering and visualisation algorithms can be reduced replacing original objects with their representative elements (code vectors or fingerprints) by vector quantisation. We introduce widespread vector quantisation methods, the \(k\)-means and the neural gas algorithms. Topology representing networks obtained by the modification of neural gas algorithm create graphs useful for the low-dimensional visualisation of data set. In this chapter the basic algorithm of the topology representing networks and its variants (Dynamic Topology Representing Network and Weighted Incremental Neural Network) are presented in details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yao, A.: On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM J. Comput. 721–736 (1892)

    Google Scholar 

  2. Boopathy, G., Arockiasamy, S.: Implementation of vector quantization for image compression—a survey. Global J. Comput. Sci. Technol. 10(3), 22–28 (2010)

    Google Scholar 

  3. Domingo, F., Saloma, C.A.: Image compression by vector quantization with noniterative derivation of a codebook: applications to video and confocal images. Appl. Opt. 38(17), 3735–3744 (1999)

    Article  Google Scholar 

  4. Garcia, C., Tziritas, G.: Face detection using quantized skin color regions merging and wavelet packet analysis. IEEE Trans. Multimedia 1(3), 264–277 (1999)

    Article  Google Scholar 

  5. Biatov, K.: A high speed unsupervised speaker retrieval using vector quantization and second-order statistics. CoRR Vol. abs/1008.4658 (2010)

    Google Scholar 

  6. Chu, W.C.: Vector quantization of harmonic magnitudes in speech coding applications a survey and new technique. EURASIP J. App. Sig. Proces. 17, 2601–2613 (2004)

    Google Scholar 

  7. Kekre, H.B., Kulkarni, V.: Speaker identification by using vector quantization. Int. J. Eng. Sci. Technol. 2(5), 1325–1331 (2010)

    Google Scholar 

  8. Abdelwahab, A.A., Muharram, N.S.: A fast codebook design algorithm based on a fuzzy clustering methodology. Int. J. Image Graph. 7(2), 291–302 (2007)

    Article  Google Scholar 

  9. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, New York (2001)

    Google Scholar 

  10. Kurasova, O., Molyte, A.: Combination of vector quantization and visualization. Lect. Notes Artif. Intell. 5632, 29–43 (2009)

    Google Scholar 

  11. Vathy-Fogarassy, A., Kiss, A., Abonyi, J.: Topology representing network map—a new tool for visualization of high-dimensional data. Trans. Comput. Sci. I 4750, 61–84 (2008)

    Google Scholar 

  12. McQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)

    Google Scholar 

  13. Linde, Y., Buzo, A., Gray, R.M.: An algorithm for vector quantizer design. IEEE Trans. Commun. 28, 84–94 (1980)

    Article  Google Scholar 

  14. Delaunay, B.: Sur la sphere vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 7, 793–800 (1934)

    Google Scholar 

  15. Martinetz, T.M., Shulten, K.J.: Topology representing networks. Neural Netw. 7(3), 507–522 (1994)

    Article  Google Scholar 

  16. Martinetz, T.M., Shulten, K.J.: A neural-gas network learns topologies. In Kohonen, T., Mäkisara, K., Simula, O., Kangas, J. (eds.) Artificial Neural Networks, pp. 397–402, Elsevier Science Publishers B.V, North-Holland (1991)

    Google Scholar 

  17. Fritzke, B.: A growing neural gas network learns topologies. Adv. Neural Inf. Proces. Syst. 7, 625–632 (1995)

    Google Scholar 

  18. Hebb, D.O.: The Organization of Behavior. John, Inc New York (1949)

    Google Scholar 

  19. Si, J., Lin, S., Vuong, M.-A.: Dynamic topology representing networks. Neural Netw. 13, 617–627 (2000)

    Article  Google Scholar 

  20. Muhammed, H.H.: Unsupervised fuzzy clustering using weighted incremental neural networks. Int. J. Neural Syst. 14(6), 355–371 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ágnes Vathy-Fogarassy .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 János Abonyi

About this chapter

Cite this chapter

Vathy-Fogarassy, Á., Abonyi, J. (2013). Vector Quantisation and Topology Based Graph Representation. In: Graph-Based Clustering and Data Visualization Algorithms. SpringerBriefs in Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-5158-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5158-6_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5157-9

  • Online ISBN: 978-1-4471-5158-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics