Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

This chapter deals with the next step following the design of an FDD system, i.e. appropriate recovery strategies, based on all available actuator/sensor/communication resources. An active fault tolerant flight control strategy based on H design tools is presented. The Fault Tolerant Control (FTC) strategy operates in such a way that once a fault is detected and confirmed by an FDD unit, a compensation loop is activated for safe recovery. A key feature of the proposed strategy is that the added FTC loop keeps unchanged the in-service control laws facilitating the certification of the whole approach and limiting the underlying Verification and Validation activities. The methodology is applied to actuator fault accommodation of a large commercial aircraft during landing approach. The results, obtained from a piloted 6-DoF flight simulator, will be presented and discussed. The application is taken from the GARTEUR project. The problem studied in this chapter is that of design and analysis of an active flight fault-tolerant control system. The chapter presents a practical case study taken from the European GARTEUR project (Flight Mechanics Action Group 16) on fault-tolerant control. Piloted flight simulator experiments are presented which show that fault tolerance can be achieved provided that there exists sufficient onboard control authority.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Group for Aeronautical Research and Technology in EURope. See http://www.nlr.nl/documents/GARTEUR_AG16_Workshop/

  2. 2.

    This flight simulator (SIMONA) is located at the Delft University of Technology, Netherlands

References

  1. Patton R (1997) Fault tolerant control: the 1997 situation. In: 3th symposium on fault detection, supervision and safety for technical processes (SAFEPROCESS’97). Hull University, Hull, UK, pp 1033–1054

    Google Scholar 

  2. Blanke M, Kinnaert M, Lunze M, Staroswiecki M (2006) Diagnosis and fault tolerant control. Springer, New York

    MATH  Google Scholar 

  3. Noura H, Theilliol D, Ponsart JC, Chamseddine A (2009) Fault-tolerant control systems: design and practical applications. Springer, London

    Book  Google Scholar 

  4. Zhang Y, Jiang J (2008) Bibliographical review on reconfigurable fault-tolerant control systems. Annu Rev Control 32:229–252

    Article  Google Scholar 

  5. Edwards C, Lombaerts T, Smaili H (2010) Fault tolerant flight control: a benchmark challenge, Lecture notes in control and information sciences. Springer, Berlin

    Book  Google Scholar 

  6. Staroswiecki M (2008) On fault handling in control systems. Int J Control Autom Syst Spec Issue FDI FTC 6(3):1–10

    Google Scholar 

  7. Cieslak J, Henry D, Zolghadri A (2010) Fault tolerant flight control: from theory to piloted flight simulator experiments. IET Control Theory Appl 4(8):1451–1461

    Article  Google Scholar 

  8. Staroswiecki M, Yang H, Jiang B (2007) Progressive accommodation of parametric faults in LQ control. Automatica 43:2070–2076

    Article  MathSciNet  MATH  Google Scholar 

  9. Hamdaoui R, Ponsart JC, Theilliol D (2009) Study of an actuator fault accommodation based on LQ control energy criterion. In: 7th workshop on advanced control and diagnosis

    Google Scholar 

  10. Lombaerts T, Chu P, Mulder JA, Joosten D (2009) Flight control reconfiguration based on a modular approach. SAFEPROCESS’2009. Barcelona, Spain, pp 259–264

    Google Scholar 

  11. Maciejowski J, Jones C (2003) MPC fault-tolerant flight control case study: Flight 1862. SAFEPROCESS’2003, pp 121–126

    Google Scholar 

  12. Joosten DA, van den Boom TJJ, Lombaerts TJJ (2007) Effective control allocation in fault-tolerant flight control with MPC and feedback linearization. In: Proceedings of the European conference on systems and control. Kos, Greece, July 2007

    Google Scholar 

  13. Zhou K, Ren Z (2001) A new controller architecture for high performance, robust, and fault-tolerant control. IEEE Trans Autom Control 46:1613–1617

    Article  MathSciNet  MATH  Google Scholar 

  14. Cieslak J, Henry D, Zolghadri A, Goupil P (2008) Development of an active fault tolerant flight control strategy. AIAA J Guid Control Dyn 31(1):135–147

    Article  Google Scholar 

  15. Gaspar P, Szaszi I, Bokor J (2005) Reconfigurable control structure to prevent the rollover of heavy vehicles. Control Eng Pract 13:699–711

    Article  Google Scholar 

  16. Cui P, Weng Z, Patton R (2008) Novel active fault-tolerant control scheme and its application to a double inverted pendulum system. J Syst Eng Electron 19(1):134–140

    MATH  Google Scholar 

  17. Alwi H, Edwards C, Stroosma O, Mulder JA (2008) Fault tolerant sliding mode control design with piloted simulator evaluation. AIAA J Guid Control Dyn 31(5):1186–1201

    Article  Google Scholar 

  18. Alwi H, Edwards C (2008) Fault tolerant control using sliding modes with on-line control allocation. Automatica 44:1859–1866

    Article  MathSciNet  MATH  Google Scholar 

  19. Alwi H, Edwards C, Tan CP (2011) Fault detection and fault-tolerant control using sliding modes, Advances in industrial control. Springer, London

    Book  MATH  Google Scholar 

  20. Shin J-Y, Belcastro CM (2006) Performance analysis on fault tolerant control system. IEEE Trans Control Syst Technol 14(9):1283–1294

    Google Scholar 

  21. Doyle JC, Glover K, Khargonekar P, Francis B (1989) State-space solutions to standard H2 and H control problems. IEEE Trans Autom Control 34(8):831–847

    Article  MathSciNet  MATH  Google Scholar 

  22. Gahinet P, Apkarian P (1994) A linear matrix inequality approach to H control. Int J Nonlinear Control 4:421–428

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang H, Jiang B, Staroswiecki M (2009) Supervisory fault tolerant control for a class of uncertain nonlinear systems. Automatica 45:2319–2324

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang H, Jiang B, Cocquempot V (2010) Fault tolerant control design for hybrid system, Lecture notes in control and information sciences. Springer, Berlin

    Book  Google Scholar 

  25. Jain T, Yamé JJ, Sauter D (2011) Model-free reconfiguration mechanism for fault tolerance. Int J Appl Math Comput Sci 22(1):125–137

    Google Scholar 

  26. Efimov D, Cieslak J, Henry D (2010) Supervisory fault tolerant control via common Lyapunov function approach. In: IEEE conference on control and fault tolerant systems

    Google Scholar 

  27. Efimov DV, Cieslak J, Henry D (2012) Supervisory fault tolerant control with mutual performance optimization. Int J Adapt Control Signal Process. doi: 10.1002/acs.2296

    Google Scholar 

  28. Yamé JJ, Hanping Q, Kinnaert M (2010) A self-conditioned implementation of switching controllers for smooth transition in multimode systems. In: IEEE conference on control and fault tolerant systems

    Google Scholar 

  29. Cieslak J, Efimov D, Henry D (2012) Supervisory fault tolerant control scheme based on bumpless scheme and dwell-time conditions. IFAC Safeprocess’12, Mexico City, Mexico

    Google Scholar 

  30. Cieslak J, Efimov D, Henry D (2010) Observer-based structures to Active fault tolerant control problems. In: IEEE conference on control and fault tolerant systems

    Google Scholar 

  31. Cieslak J, Henry D, Zolghadri A (2010) A solution for management of fault diagnostic and fault tolerance performances in active FTC schemes. In: 18th IFAC symposium on automatic control in aerospace, Nara, Japan

    Google Scholar 

  32. Zhou K, Doyle JC (1997) Essentials of robust control. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  33. Campos-Delgado DU, Zhou K (2003) A parametric optimization approach to H and H 2 strong stabilization. Automatica 39:1205–1211

    Article  MathSciNet  MATH  Google Scholar 

  34. Turner MC, Walker DJ (2000) Linear quadratic bumpless transfer. Automatica 36:1089–1101

    Article  MathSciNet  MATH  Google Scholar 

  35. Van der linden, CAAM (1996) DASMAT-Delft university aircraft simulation model and analysis tool. Report LR-781, Technical University Delft, Delft

    Google Scholar 

  36. Smaili MH (1999) FLIGHTLAB 747 benchmark for advanced flight control engineering v4.03. Technical report, Technical University Delft, Delft

    Google Scholar 

  37. Marcos A, Balas G (2003) A Boeing 747-100/200 aircraft fault tolerant and diagnostic benchmark. Department of Aerospace and Engineering Mechanics, TR AEM-UoM-2003-1, University of Minnesota, Minneapolis, MN

    Google Scholar 

  38. Smaili H, Breeman J, Lombaerts T, Stroosma O (2009) A benchmark for fault tolerant flight control evaluation. SAFEPROCESS’2009, Barcelona, Spain

    Google Scholar 

  39. Smaili MH, Breeman J, Lombaerts TJJ, Joosten DA (2006) A simulation benchmark for integrated fault tolerant flight control evaluation. In: AIAA modeling and simulation technologies conference and exhibit, 21–24 Aug 2006, Keystone, CO

    Google Scholar 

  40. Lombaerts TJJ, Joosten DA, Breeman J, Smaili H, Van den Boom TJJ, Chuk QP, Mulder JA, Verhaegen M (2006) Assessment criteria as specifications for reconfiguring control. In: AIAA guidance, navigation, and control conference and exhibit, 21–24 Aug 2006, Keystone, CO

    Google Scholar 

  41. Smaili MH, Mulder JA (2000) Flight data reconstruction and simulation of the 1992 Amsterdam Bijlmermeer airplane accident. AIAA GNC conference. AIAA 2000–4586

    Google Scholar 

  42. Koekebakker SH (2001) Model based control of a flight simulator motion base. Ph.D. thesis, Delft University of Technology, Delft

    Google Scholar 

  43. Stroosma O, Van Paassen MM, Mulder M (2003) Using the SIMONA research simulator for human-machine interaction research. In: AIAA modeling and simulation technologies conference. Austin, TX, Aug 2003

    Google Scholar 

  44. Berkouwer WR, Stroosma O, Van Paassen MM, Mulder M, Mulder JA (2005) Measuring the performance of the SIMONA research simulator’s motion system. In: AIAA modeling and simulation conference. San Francisco, CA, Aug 2005

    Google Scholar 

  45. Stroosma O, Smaili H, Mulder JA (2009) Pilot-in-the-loop evaluation of fault-tolerant flight control systems. SAFEPROCESS’2009. Barcelona, Spain, pp 259–264

    Google Scholar 

  46. Boiffier JL (1998) The dynamics of flight equations. John Wiley & Sons, Chichester UK

    Google Scholar 

  47. Hanke C, Nordwall DR (1970) The simulation of a jumbo jet transport aircraft Volume II: modeling data. Boeing Company, D6-30643

    Google Scholar 

  48. Varga A (2007) Fault detection and Isolation of actuator failures for a large transport aircraft. In: European air and space conference. Germany

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix A: State and Input Definition of the Boeing 747-100/200

Table A.1 State definition of the Boeing 747-100/200
Table A.2 Input definition of the Boeing 747-100/200

Appendix B: A, B e , B h, and C State-Space Matrices

$$ A=\left( {\begin{array}{*{20}{c}} {-6.7926\times {10^{-1 }}} & {-8.6\times {10^{-6 }}} & {-8.856\times {10^{-1 }}} & 0 & {-3.45\times {10^{-6 }}} \\ {-1.6179\times {10^{-1 }}} & {-7.588\times {10^{-3 }}} & {4.9965} & {-9.8} & {4.59\times {10^{-5 }}} \\ {1.0084} & {-1.0036\times {10^{-3 }}} & {-6.735\times {10^{-1 }}} & 0 & {5.9\times {10^{-6 }}} \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & {-1.338\times {10^2}} & {1.338\times {10^2}} & 0 \\ \end{array}} \right) $$
$$ {B_e}=\left( {\begin{array}{*{20}{c}} {-4.965\times {10^{-3 }}} & {-4.965\times {10^{-3 }}} & {-4.764\times {10^{-3 }}} & {-4.764\times {10^{-3 }}} \\ 0 & 0 & 0 & 0 \\ {-1.86\times {10^{-4 }}} & {-1.86\times {10^{-4 }}} & {-1.9\times {10^{-4 }}} & {-1.9\times {10^{-4 }}} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array}} \right) $$
$$ {B_h}=\left( {\begin{array}{*{20}{c}} {-4.5944\times {10^{-2 }}} \\ 0 \\ {-1.912\times {10^{-3 }}} \\ 0 \\ 0 \\ \end{array}} \right) $$
$$ C=\left( {\begin{array}{*{20}{c}} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & {-1.338\times {10^2}} & {1.338\times {10^2}} & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \end{array}} \right) $$

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Zolghadri, A., Henry, D., Cieslak, J., Efimov, D., Goupil, P. (2014). An Active Fault-Tolerant Flight Control Strategy. In: Fault Diagnosis and Fault-Tolerant Control and Guidance for Aerospace Vehicles. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-5313-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5313-9_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5312-2

  • Online ISBN: 978-1-4471-5313-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics