Skip to main content

Autonomic Control of Cardiac Arrhythmia

  • Chapter
  • First Online:
Cardiac Arrhythmias

Abstract

The autonomic nervous system controls virtually all aspects of bodily function, and this is perfectly illustrated in the control of the heart. The autonomic nervous system is not only responsible for the “flight and fight” response but is also important for the instantaneous beat-to-beat control of cardiac function. This fine control is vital because the heart is a highly sophisticated organ, and management by both sympathetic and parasympathetic divisions helps maintain cardiac function within physiological limits. Equally, the autonomic nervous system has a significant impact in pathology. Abnormal autonomic control is a hallmark in many cardiac diseases which may actually precipitate and maintain cardiac dysfunction. An important example of the way by which activity of the autonomic nervous system affects the heart is the influence on cardiac rhythm. In this chapter we focus on two major cardiac arrhythmias, namely, atrial and ventricular fibrillations, which not only carry the most significant burden in clinical practice but also the highest risk of fatality and morbidity. Both of these arrhythmias are intimately associated with the autonomic nervous system and provide a perfect example of complex and heterogeneous control. Our understanding in this fascinating area of autonomic cardiac control is key to the development of successful treatment for these important conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nieuwlaat R, Capucci A, Camm AJ, Olsson SB, Andresen D, Davies DW, Cobbe S, Breithardt G, Le Heuzey JY, Prins MH, Levy S, Crijns HJ. Atrial fibrillation management: a prospective survey in ESC member countries: the Euro Heart Survey on Atrial Fibrillation. Eur Heart J. 2005;26:2422–34.

    PubMed  Google Scholar 

  2. Lloyd-Jones DM, Wang TJ, Leip EP, Larson MG, Levy D, Vasan RS, D’Agostino RB, Massaro JM, Beiser A, Wolf PA, Benjamin EJ. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation. 2004;110:1042–6.

    PubMed  Google Scholar 

  3. Priori SG, Aliot E, Blømstrom-Lundqvist C, Bossaert L, Breithardt G, Brugada P, Camm JA, Cappato R, Cobbe SM, Di Mario C, Maron BJ, McKenna WJ, Pedersen AK, Ravens U, Schwartz PJ, Trusz-Gluza M, Vardas P, Wellens HJJ, Zipes DP. Task force on sudden cardiac death, European society of cardiology. Europace. 2002;4:3–18.

    CAS  PubMed  Google Scholar 

  4. Atwood C, Eisenberg MS, Herlitz J, Rea TD. Incidence of EMS-treated out of hospital cardiac arrest in Europe. Resuscitation. 2005;67:75–80.

    PubMed  Google Scholar 

  5. Ulphani JS, Cain JH, Inderyas F, Gordon D, Gikas PV, Shade G, Mayor D, Arora R, Kadish AH, Goldberger JJ. Quantitative analysis of parasympathetic innervation of the porcine heart. Heart Rhythm. 2010;7:1113–9.

    PubMed  Google Scholar 

  6. Randall WC, Rohse WG. The augmentor action of the sympathetic cardiac nerves. Circ Res. 1956;4(4):470–5.

    CAS  PubMed  Google Scholar 

  7. Armour JA. Potential clinical relevance of the little brain on the mammalian heart. Exp Physiol. 2008;93(2):165–76.

    CAS  PubMed  Google Scholar 

  8. Ardell JL. Structure and function of mammalian intrinsic cardiac neurons. In: Armour JA, Ardell JL, editors. Neurocardiology. New York: Oxford University Press; 1994. p. 95–114.

    Google Scholar 

  9. Bibevski S, Dunlap ME. Ganglionic mechanisms contribute to diminished vagal control in heart failure. Circulation. 1999;99(22):2958–63.

    CAS  PubMed  Google Scholar 

  10. Armour JA, Murphy DA, Yuan BX, Macdonald S, Hopkins DA. Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec. 1997;247:289–98.

    CAS  PubMed  Google Scholar 

  11. Batulevicius D, Pauziene N, Pauza DH. Architecture and age-related analysis of the neuronal number of the guinea pig intrinsic cardiac nerve plexus. Anat Rec. 2005;187:225–43.

    Google Scholar 

  12. Armour JA, Kember GC. Cardiac sensory neurons. In: Armour JA, Ardell JL, editors. Basic and clinical neurocardiology. New York: Oxford University Press; 2004. p. 79–117.

    Google Scholar 

  13. Haissaguerre M, Jais P, Shah DC, Takahashi A, Hocini M, Quiniou G, Garrigue S, Le Mouroux A, Le Metayer P, Clementy J. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. NEJM. 1998;339:659–66.

    CAS  PubMed  Google Scholar 

  14. Chen PS, Tan AY. Autonomic nerve activity and atrial fibrillation. Heart Rhythm. 2007;4:S61–4.

    PubMed Central  PubMed  Google Scholar 

  15. Shen MJ, Choi EK, Tan AY, Lin SF, Fishbein MV, Chen LS, Chen PS. Neural mechanisms of atrial arrhythmias. Nat Rev. 2012;9:30–9.

    Google Scholar 

  16. Scherf D. Studies on auricular tachycardia caused by aconitine administration. Proc Soc Exp Biol Med. 1947;64(2):233–9.

    CAS  PubMed  Google Scholar 

  17. Page P, Armour JA, Yin Y, Vermeulen M, Nadeau R, Cardinal R. Differential effects of cervical vagosympathetic and mediastinal nerve activation on atrial arrhythmia formation in dogs. Auton Neurosci. 2006;128(1–2):9–18.

    PubMed  Google Scholar 

  18. Lu Z, Scherlag BJ, Lin J, Yu L, Guo JH, Niu G, Jackman WM, Lazzara R, Jiang H, Po SS. Autonomic mechanism for the initiation of rapid firing from atria and pulmonary veins: evidence by ablation of ganglionated plexuses. J Cardiovasc Electrophys. 2009;84(2):245–52.

    CAS  Google Scholar 

  19. Chiou CW, Eble JN, Zipes DP. Efferent vagal innervation of the canine atria and sinus and atrioventricular nodes. The third fat pad. Circulation. 1997;95(11):2573–84.

    CAS  PubMed  Google Scholar 

  20. Sharifov OF, Fedorov VV, Beloshapko GG, Glukhov AV, Yushmanova AV, Rosenshtraukh LV. Roles of adrenergic and cholinergic stimulation in spontaneous atrial fibrillation in dogs. J Am Coll Cardiol. 2004;43(3):483–90.

    CAS  PubMed  Google Scholar 

  21. Tan AY, Zhou S, Ogawa M, Song J, Chu M, Li H, Fishbein MC, Lin SF, Chen LS, Chen PS. Neural mechanisms of paroxysmal atrial fibrillation and paroxysmal atrial tachycardia in ambulatory canines. Circulation. 2008;118(9):916–25.

    PubMed Central  PubMed  Google Scholar 

  22. Patterson E, Po SS, Scherlag BJ, Lazzara R. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm. 2005;2(6):624–31.

    PubMed  Google Scholar 

  23. Tan AY, Li H, Wachsmann-Hogiu S, Chen LS, Chen PS, Fishbein MC. Autonomic innervation and segmental muscular disconnections at the human pulmonary vein-atrial junction: implications for catheter ablation of atrial-pulmonary vein junction. J Am Coll Cardiol. 2006;48(1):132–43.

    PubMed  Google Scholar 

  24. Pappone C, Santinelli V, Manguso F, Vicedomini G, Gugliotta F, Augello G, Mazzone P, Tortoriello V, Landoni G, Zangrillo A, Lang C, Tomita T, Mesas C, Mastella E, Alfieri O. Pulmonary vein denervation enhances long-term benefit after circumferential ablation for paroxysmal atrial fibrillation. Circulation. 2004;109(3): 327–34.

    PubMed  Google Scholar 

  25. Ali IM, Bulter CK, Armour JA, Murphy DA. Modification of supraventricular tachyarrhythmias by stimulating atrial neurons. Ann Thorac Surg. 1990;50:251–6.

    CAS  PubMed  Google Scholar 

  26. Osman F, Kundu S, Tuan J, Jeilan M, Stafford PJ, Andre NG. Ganglionic plexus ablation during pulmonary vein isolation–predisposing to ventricular arrhythmias? Indian Pacing Electrophysiol J. 2010;10(2):104–7.

    PubMed Central  PubMed  Google Scholar 

  27. Li S, Scherlag BJ, Yu L, Sheng X, Zhang Y, Ali R, Dong Y, Ghias M, Po SS. Low-level vagosympathetic stimulation. A paradox and potential new modality for the treatment of focal atrial fibrillation. Circ Arrhyth Electrophysiol. 2009;2:645–51.

    Google Scholar 

  28. Sheng X, Scherlag BJ, Yu L, Li S, Ali R, Zhang Y, Fu G, Nakagawa H, Jackson WM, Lazzare R, Po SS. Prevention and reversal of atrial fibrillation inducibility and autonomic remodelling by low-level vagosympathetic nerve stimulation. JACC. 2011;57(5):563–71.

    PubMed  Google Scholar 

  29. Willich SN, Levy D, Rocco MB, Tofler GH, Stone PH, Muller JE. Circadian variation in the incidence of sudden cardiac death in the Framingham Heart Study population. Am J Cardiol. 1987;60(10):801–6.

    CAS  PubMed  Google Scholar 

  30. Bonnemeier H, Richardt G, Potratz J, Wiegand UK, Brandes A, Kluge N, Katus HA. Circadian profile of cardiac autonomic nervous modulation in healthy subjects: differing effects of aging and gender on heart rate variability. J Cardiovasc Electrophysiol. 2003;14(8):791–9.

    PubMed  Google Scholar 

  31. Kleiger RE, Miller JP, Bigger JT, Moss AJ. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987;59(4):256–62.

    CAS  PubMed  Google Scholar 

  32. Bigger JT, Fleiss JL, Steinman RC, Rolnitzky LM, Kleiger RE, Rottman JN. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation. 1992;85(1):164–71.

    PubMed  Google Scholar 

  33. Nolan J, Batin PD, Andrews R, Lindsay SJ, Brooksby P, Mullen M, Baig W, Flapan AD, Cowley A, Prescott RJ, Neilson JM, Fox KA. Prospective study of heart rate variability and mortality in chronic heart failure: results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-heart). Circulation. 1998;98(15):1510–6.

    CAS  PubMed  Google Scholar 

  34. La Rovere MT, Pinna GD, Maestri R, Robbi E, Caporotondi A, Guazzotti G, Sleight P, Febo O. Prognostic implications of baroreflex sensitivity in heart failure patients in the beta-blocking era. J Am Coll Cardiol. 2009;53(2):193–9.

    PubMed  Google Scholar 

  35. La Rovere MT, Bigger JT, Marcus FI, Mortara A, Schwartx PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet. 1998;351(9101):478–84.

    PubMed  Google Scholar 

  36. Schwartz PJ, Vanoli E, Stramba-Badiale M, De Ferrari GM, Billman GE, Foreman RD. Autonomic mechanisms and sudden death. New insights from analysis of baroreceptor reflexes in conscious dogs with and without a myocardial infarction. Circulation. 1988;78(4):969–79.

    CAS  PubMed  Google Scholar 

  37. De Ferrari GM, Vanoli E, Stramba-Badiale M, Hull Jr SS, Foreman RD, Schwartz PJ. Vagal reflexes and survival during acute myocardial ischemia in conscious dogs with healed myocardial infarction. AJP. 1991;261(1):H63–9.

    Google Scholar 

  38. Billman G, Schwartz P, Stone H. Baroreceptor reflex control of heart rate: a predictor of sudden cardiac death. Circulation. 1982;66(4):874–80.

    CAS  PubMed  Google Scholar 

  39. Cerati D, Schwartz P. Single cardiac vagal fiber activity, acute myocardial ischemia, and risk for sudden death. Circ Res. 1991;69(5):1389–401.

    CAS  PubMed  Google Scholar 

  40. Ishise H, Asanoi H, Ishizaka S, Joho S, Kameyama T, Umeno K, Inoue H. Time course of sympathovagal imbalance and left ventricular dysfunction in conscious dogs with heart failure. J Appl Physiol. 1998;84(4):1234–41.

    CAS  PubMed  Google Scholar 

  41. Grassi G, Seravalle G, Bertinieri G, Turri C, Stella ML, Scopelliti F, Mancia G. Sympathetic and reflex abnormalities in heart failure secondary to ischaemic or idiopathic dilated cardiomyopathy. Clin Sci (Lond). 2001;101(2):141–6.

    CAS  Google Scholar 

  42. Schwartz PJ. The autonomic nervous system and sudden death. Eur Heart J. 1998;19(F):F72–80.

    PubMed  Google Scholar 

  43. Zhou S, Jung BC, Tan AY, Trang VQ, Gholmieh G, Han SW, Lin SF, Fishbein MC, Chen PS, Chen LS. Spontaneous stellate ganglion nerve activity and ventricular arrhythmia in a canine model of sudden death. Heart Rhythm. 2008;5(1):131–9.

    PubMed  Google Scholar 

  44. Piccirillo G, Magrì D, Ogawa M, Song J, Chong VJ, Han S, Joung B, Choi EK, Hwang S, Chen LS, Lin SF, Chen PS. Autonomic nervous system activity measured directly and QT interval variability in normal and pacing-induced tachycardia heart failure dogs. J Am Coll Cardiol. 2009;54(9):840–50.

    PubMed Central  PubMed  Google Scholar 

  45. Garfinkel A, Kim YH, Voroshilovsky O, Qu Z, Kil JR, Lee MH, Karagueuzian HS, Weiss JN, Chen PS. Preventing ventricular fibrillation by flattening cardiac restitution. Proc Natl Acad Sci. 2000;97(11):6061–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Nolasco JB, Dahlen RW. A graphic method for the study of alternation in cardiac action potentials. J Appl Physiol. 1968;25(2): 191–6.

    CAS  PubMed  Google Scholar 

  47. Gilmour RF, Chialvo DR. Electrical restitution, critical mass, and the riddle of fibrillation. J Cardiovasc Electrophysiol. 1999;10(8): 1087–9.

    PubMed  Google Scholar 

  48. Ng GA, Brack KE, Coote JH. Effects of direct sympathetic and vagus nerve stimulation on the physiology of the whole heart–a novel model of isolated Langendorff perfused rabbit heart with intact dual autonomic innervation. Exp Physiol. 2001;86(3):319–29.

    CAS  PubMed  Google Scholar 

  49. Ng GA, Brack KE, Patel VH, Coote JH. Autonomic modulation of electrical restitution, alternans and ventricular fibrillation initiation in the isolated heart. Cardiovasc Res. 2007;73(4):750–60.

    CAS  PubMed  Google Scholar 

  50. Taggart P, Sutton P, Chalabi Z, Boyett MR, Simon R, Elliott D, Gill JS. Effect of adrenergic stimulation on action potential duration restitution in humans. Circulation. 2003;107(2):285–9.

    CAS  PubMed  Google Scholar 

  51. Ardell JL, Randall WC, Cannon WJ, Schmacht DC, Tasdemiroglu E. Differential sympathetic regulation of automatic, conductile, and contractile tissue in dog heart. AJP. 1988;255:H1050–9.

    CAS  Google Scholar 

  52. Haws CW, Burgess MJ. Effects of bilateral and unilateral stellate stimulation on canine ventricular refractory periods at sites overlapping innervation. Circ Res. 1978;42(2):195–8.

    CAS  PubMed  Google Scholar 

  53. Yanowitz F, Preston JB, Abildskov JA. Functional distribution of right and left stellate innervation to the ventricles. Production of neurogenic electrocardiographic changes by unilateral alteration of sympathetic tone. Circ Res. 1966;18(4):416–28.

    CAS  PubMed  Google Scholar 

  54. Schwartz PJ, Snebold NG, Brown AM. Effects of unilateral cardiac sympathetic denervation on the ventricular fibrillation threshold. Am J Cardiol. 1976;37(7):1034–40.

    CAS  PubMed  Google Scholar 

  55. Hanich RF, Levine JH, Spear JF, Moore EN. Autonomic modulation of ventricular arrhythmia in cesium chloride-induced long QT syndrome. Circulation. 1988;77(5):1149–61.

    CAS  PubMed  Google Scholar 

  56. Priori S, Mantica M, Schwartz PJ. Delayed afterdepolarizations elicited in vivo by left stellate ganglion stimulation. Circulation. 1988;78(1):178–85.

    CAS  PubMed  Google Scholar 

  57. Winter J, Tanko AS, Brack KE, Ng GA. Differential cardiac responses to unilateral sympathetic nerve stimulation in the isolated innervated rabbit heart. Auton Neurosci. 2010;166:4–14.

    Google Scholar 

  58. Schwartz PJ. Prevention of sudden cardiac death after a first myocardial infarction by pharmacologic or surgical antiadrenergic interventions. JCE. 1992;3(1):2–16.

    Google Scholar 

  59. Wilde AA, Bhuiyan ZA, Crotti L, Facchini M, De Ferrari GM, Paul T, Ferrandi C, Koolbergen DR, Odero A, Schwartz PJ. Left cardiac sympathetic denervation for catecholaminergic polymorphic ventricular tachycardia. NEJM. 2008;358(19):2024–9.

    CAS  PubMed  Google Scholar 

  60. Bourke T, Vaseghi M, Michowitz Y, Sankhla V, Shah M, Swapna N, Boyle NG, Mahajan A, Narasimhan C, Lokhandwala Y, Shivkumar K. Neuraxial modulation for refractory ventricular arrhythmias: value of thoracic epidural anaesthesia and surgical left cardiac sympathetic denervation. Circulation. 2010;121(21): 2255–62.

    PubMed Central  PubMed  Google Scholar 

  61. Dahlström A, Mya-Tu M, Fuxe K, Zetterström BE. Observations on adrenergic innervation of dog heart. Am J Physiol. 1965;209(4): 689–92.

    PubMed  Google Scholar 

  62. Kawano H, Okada R, Yano K. Histological study on the distribution of autonomic nerves in the human heart. Heart Vessels. 2003;18(1):32–9.

    PubMed  Google Scholar 

  63. Mantravadi R, Gabris B, Liu T, Choi BR, de Groat WC, Ng GA, Salama G. Autonomic nerve stimulation reverses ventricular repolarization sequence in rabbit hearts. Circ Res. 2007;100(7):e72–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Han J, Moe GK. Nonuniform recovery of excitability in ventricular muscle. Circ Res. 1964;14:44–60.

    CAS  PubMed  Google Scholar 

  65. Ng GA, Mantravadi R, Walker WH, Ortin WG, Choi BR, de Groat W, Salama G. Sympathetic nerve stimulation produces spatial heterogeneities of action potential restitution. Heart Rhythm. 2009;6(5):696–706.

    PubMed  Google Scholar 

  66. Kuo CS, Munakata K, Reddy CP, Surawicz B. Characteristics and possible mechanism of ventricular arrhythmia dependent on the dispersion of action potential durations. Circulation. 1983;67(6): 1356–67.

    CAS  PubMed  Google Scholar 

  67. Laurita KR, Girouard SD, Akar FG, Rosenbaum DS. Modulated dispersion explains changes in arrhythmia vulnerability during premature stimulation of the heart. Circulation. 1998;98(24):2774–80.

    CAS  PubMed  Google Scholar 

  68. Zhang C, Xu D, Li Y, Liu N, Wang L, Lu Z. Effect of autonomic nervous system on the transmural dispersion of ventricular repolarization in intact canine. J Huazhong Univ Sci Technolog Med Sci. 2004;24(1):37–40.

    PubMed  Google Scholar 

  69. Volders PG, Stengl M, van Opstal JM, Gerlach U, Spätjens RL, Beekman JD, Sipido KR, Vos MA. Probing the contribution of IKs to canine ventricular repolarization. Key role of β-adrenergic receptor stimulation. Circulation. 2003;107:2753–60.

    PubMed  Google Scholar 

  70. Schwartz PJ, Priori SG, Cerrone M, Spazzolini C, Odero A, Napolitano C, Bloise R, De Ferrari GM, Klersy C, Moss AJ, Zareba W, Robinson JL, Hall WJ, Brink PA, Toivonen L, Epstein AE, Li C, Hu D. Left cardiac sympathetic denervation in the management of high risk patients affected by long QT syndrome. Circulation. 2004;109:1826–33.

    PubMed  Google Scholar 

  71. Rysevaite K, Saburkina I, Pauziene N, Vaitkevicius R, Noujaim SF, Jalife J, Pauza DH. Immunohistochemical characterization of the intrinsic cardiac neural plexus in whole-mount mouse heart preparations. Heart Rhythm. 2011;8(5):731–8.

    PubMed Central  PubMed  Google Scholar 

  72. Batulevicius D, Pauziene N, Pauza DH. Architecture and age-related analysis of the neuronal number of the guinea pig intrinsic cardiac nerve plexus. Ann Anat. 2005;187(3):225–43.

    PubMed  Google Scholar 

  73. Johnson TA, Gray AL, Lauenstein JM, Newton SS, Massari VJ. Parasympathetic control of the heart. I. An interventriculo-septal ganglion is the major source of the vagal intracardiac innervation of the ventricles. J Appl Physiol. 2004;96(6):2265–72.

    PubMed  Google Scholar 

  74. Taggart P, Critchley H, Lambiase PD. Heart-brain interactions in cardiac arrhythmia. Heart. 2011;97:698–708.

    CAS  PubMed  Google Scholar 

  75. Saburkina I, Rysevaite K, Pauziene N, Mischke K, Schauerte P, Jalife J, Pauza DH. Epicardial neural ganglionated plexus of ovine heart: anatomic basis for experimental cardiac electrophysiology and nerve protective cardiac surgery. Heart Rhythm. 2010;7(7): 942–50.

    PubMed Central  PubMed  Google Scholar 

  76. Pauza DH, Skripka V, Pauziene N, Stropus R. Morphology, distribution, and variability of the epicardiac neural ganglionated subplexuses in the human heart. Anat Rec. 2000;259(4):353–82.

    CAS  PubMed  Google Scholar 

  77. Einbrodt E. Ueber Herzreizung und ihr Verhaeltnis zum Blutdruck. Akademie der Wissenschaften (Vienna) Sitzungsberichte. 1859;38:345.

    Google Scholar 

  78. Yoon MS, Han J, Tse WW, Rogers R. Effects of vagal stimulation, atropine, and propranolol on fibrillation threshold of normal and ischemic ventricles. Am Heart J. 1977;93(1):60–5.

    CAS  PubMed  Google Scholar 

  79. Kent KM, Smith ER, Redwood DR, Epstein SE. Electrical stability of acutely ischemic myocardium. Influences of heart rate and vagal stimulation. Circulation. 1973;47(2):291–8.

    CAS  PubMed  Google Scholar 

  80. Kolman B, Verrier R, Lown B. The effect of vagus nerve stimulation upon vulnerability of the canine ventricle: role of sympathetic-parasympathetic interactions. Circulation. 1975;52(4):578–85.

    CAS  PubMed  Google Scholar 

  81. Scherlag BJ, Helfant RH, Haft JI, Damato AN. Electrophysiology underlying ventricular arrhythmias due to coronary ligation. Am J Physiol. 1970;219(6):1665–71.

    CAS  PubMed  Google Scholar 

  82. Goldstein RE, Karsh RB, Smith ER, Orlando M, Norman D, Farnham G, Redwood DR, Epstein SE. Influence of atropine and of vagally mediated bradycardia on the occurrence of ventricular arrhythmias following acute coronary occlusion in closed-chest dogs. Circulation. 1973;47(6):1180–90.

    CAS  PubMed  Google Scholar 

  83. Waxman H, Cain M, Greenspan A, Josephson M. Termination of ventricular tachycardia with ventricular stimulation: salutary effect of increased current strength. Circulation. 1982;65(4): 800–4.

    CAS  PubMed  Google Scholar 

  84. Corr PB, Gillis RA. Role of the vagus nerves in the cardiovascular changes induced by coronary occlusion. Circulation. 1974;49(1):86–97.

    CAS  PubMed  Google Scholar 

  85. Zuanetti G, De Ferrari GM, Priori SG, Schwartz PJ. Protective effect of vagal stimulation on reperfusion arrhythmias in cats. Circ Res. 1987;61:429–35.

    CAS  PubMed  Google Scholar 

  86. Schwartz PJ, Billman GE, Stone HL. Autonomic mechanisms in ventricular fibrillation induced by myocardial ischemia during exercise in dogs with healed myocardial infarction. An experimental preparation for sudden cardiac death. Circulation. 1984;69(4):790–800.

    CAS  PubMed  Google Scholar 

  87. Vaillant F, Timour Q, Descotes J, Manati W, Belhani D, Bui-Xuan B, Tabib A, Bricca G, Chevalier P. Ivabradine induces an increase in ventricular fibrillation threshold during acute myocardial ischemia: an experimental study. J Cardiovasc Pharmacol. 2008;52(6): 548–54.

    CAS  PubMed  Google Scholar 

  88. Vanoli E, De Ferrari GM, Stramba-Badiale M, Hull Jr SS, Foreman RD, Schwartz PJ. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res. 1991;68(5):1471–81.

    CAS  PubMed  Google Scholar 

  89. Brack KE, Patel VH, Coote JH, Ng GA. Nitric oxide mediates the vagal protective effect on ventricular fibrillation via effects on action potential duration restitution in the rabbit heart. J Physiol. 2007;583:695–704.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Martins JB, Zipes DB. Effects of sympathetic and vagal nerves on recovery properties of the endocardium and epicardium of the canine left ventricle. Circ Res. 1980;46(1):100–10.

    CAS  PubMed  Google Scholar 

  91. Samaan A. Antagonistic cardiac nerves and heart rate. J Physiol. 1935;83:332–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Levy MN. Sympathetic and parasympathetic interactions of the heart. Circ Res. 1971;29:437–45.

    CAS  PubMed  Google Scholar 

  93. Brack KE, Coote JH, Ng GA. Vagus nerve stimulation inhibits the increase in the Ca2+ transient and left ventricular force caused by sympathetic nerve stimulation but has no direct effects alone – epicardial Ca2+ fluorescence studies using fura-2 AM in the isolated innervated beating rabbit heart. Exp Physiol. 2010;95(1): 80–92.

    CAS  PubMed  Google Scholar 

  94. Rabinowitz S, Verrier R, Lown B. Muscarinic effects of vagosympathetic trunk stimulation on the repetitive extrasystole (RE) threshold. Circulation. 1976;53(4):622–7.

    CAS  PubMed  Google Scholar 

  95. Muscholl E. Peripheral muscarinic control of norepinephrine release in the cardiovascular system. Am J Physiol. 1980;239(6): H713–20.

    CAS  PubMed  Google Scholar 

  96. Potter EK. Neuropeptide Y, as an autonomic neurotransmitter. Pharmacol Ther. 1988;37(2):251–73.

    CAS  PubMed  Google Scholar 

  97. Herring N, Lokale MN, Danson EJ, Heaton DA, Paterson DJ. Neuropeptide Y reduces acetylcholine release and vagal bradycardia via a Y2 receptor-mediated, protein kinase C-dependent pathway. JMCC. 2008;44(3):477–85.

    CAS  Google Scholar 

  98. Wang S, Han H, Jiang Y, Wang C, Song H, Pan Z, Du J, Fan Y, Du Z, Liu Y. Activation of cardiac M3 muscarinic acetylcholine receptors has cardioprotective effects against ischaemia-induced arrhythmia. Clin Exp Pharm Physiol. 2012. doi:10.111/j.1440-1681.2012.05672.x.

    Google Scholar 

  99. Brack KE, Coote JH, Ng GA. Vagus nerve stimulation protects against ventricular fibrillation independent of muscarinic receptor activation. Cardiovasc Res. 2010;91(3):437–46.

    Google Scholar 

  100. Brack KE, Patel VH, Mantravardi R, Coote JH, Ng GA. Direct evidence of nitric oxide release from neuronal nitric oxide synthase activation in the left ventricle as a result of cervical vagus nerve stimulation. J Physiol. 2009;587(Pt 12):3045–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Kumar K, Nguyen K, Waxman S, Nearing BD, Wellenius GA, Zhao SX, Verrier RL. Potent antifibrillatory effects of intrapericardial nitro-glycerine in the ischemic porcine heart. JACC. 2003;41(10):1831–7.

    CAS  PubMed  Google Scholar 

  102. Patel VH, Brack KE, Kundu S, Coote JH, Ng GA. The effect of nitric oxide on electrical restitution and ventricular fibrillation in the isolated rabbit heart: mechanism underlying the antifibrillatory effects of vagus nerve activity. Eur Heart J. 2004;25(Supp. 1):68 [abstract].

    Google Scholar 

  103. Henning RJ, Sawmiller DR. Vasoactive intestinal peptide: cardiovascular effects. Cardiovasc Res. 2001;49(1):27–37.

    CAS  PubMed  Google Scholar 

  104. Jumrussirikul P, Dinerman J, Dawson TM, Dawson VL, Ekelund U, Georgakopoulos D, Schramm LP, Calkins H, Snyder SH, Hare JM, Berger RD. Interaction between neuronal nitric oxide synthase and inhibitory G protein activity in heart rate regulation in conscious mice. JCE. 1998;102(7):1279–85.

    CAS  Google Scholar 

  105. Jones JF. Cardiac defibrillator neurones. J Physiol. 2009;587(Pt 12):2715.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Singh S, Gray T, Wurster RD. Nitric oxide and carbon monoxide synthesizing enzymes and soluble guanylyl cyclase within neurons of adult human cardiac ganglia. Auton Neurosci. 2009;145(1–2):93–8.

    CAS  PubMed  Google Scholar 

  107. Hoover DB, Isaacs ER, Jaques F, Hoard JL, Page P, Armour JA. Novel neurotransmitters of the human intrinsic cardiac nervous system. Neuroscience. 2009;164(3):1170–9.

    CAS  PubMed  Google Scholar 

  108. Tracey KJ. The inflammatory reflex. Nature. 2001;420:853–9.

    Google Scholar 

  109. Sloan RP, McCreath H, Tracey KJ, Sidney S, Liu K, Seeman T. RR interval variability is inversely related to inflammatory markers: the CARDIA study. Mol Med. 2007;13(3–4):178–84.

    PubMed Central  PubMed  Google Scholar 

  110. Katare RG, Anod M, Kakinuma Y, Arikawa M, Handa T, Yamasaki F, Sato T. Vagal stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardia effect. J Thoraci Cardiovasc Surg. 2009;137(1):223–30.

    CAS  Google Scholar 

  111. Katare RG, Ando M, Kakinuma Y, Arikawa M, Yamasaki F, Sato T. Differential regulation of TNF receptors by vagal nerve stimulation protects heart against acute ischemic injury. JMCC. 2010;49(2):234–44.

    CAS  Google Scholar 

  112. Eugenin EA, Branes MC, Berman J, Saez JC. TNF- αplus IFN-γ induce connexin43 expression and formation of gap junctions between human monocytes/macrophages that enhance physiological responses. J Immunol. 2003;170:1320–8.

    CAS  PubMed  Google Scholar 

  113. Ando M, Katare RG, Kakinuma Y, Zhang D, Yamasaki F, Muramoto K, Sato T. Efferent vagal nerve stimulation protects heart against ischemia induced arrhythmia by preserving connecix43 expression. Circulation. 2005;112:164–70.

    CAS  PubMed  Google Scholar 

  114. Li W, Olshansky B. Inflammatory cytokines and nitric oxide in heart failure and potential modulation by vagus nerve stimulation. Heart Fail Rev. 2011;16(2):137–45.

    CAS  PubMed  Google Scholar 

  115. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ. Nicotinic acetylcholine receptor [alpha]7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921):384–8.

    CAS  PubMed  Google Scholar 

  116. Dvorakova M, Lips KS, Bruggmann D, Slavikova J, Kuncova J, Kummer W. Developmental changes in the expression of nicotinic acetylcholine receptor α-subunits in the rat heart. Cell Tissue Res. 2005;319:201–9.

    CAS  PubMed  Google Scholar 

  117. Deck J, Bibevski S, Gnecchi-Ruscone T, Bellina V, Montano N, Dunlap ME. α7-nicotinic acetylcholine receptor subunit is not required for parasympathetic control of the heart in the mouse. Physiol Genomics. 2005;22:86–92.

    CAS  PubMed  Google Scholar 

  118. London B, Baker LC, Lee JS, Shusterman V, Choi BR, Kubota T, McTiernan CF, Feldman AM, Salama G. Calcium-dependent arrhythmias in transgenic mice with heart failure. AJP. 2003;284(2):H431–41.

    CAS  Google Scholar 

  119. Janczewski AM, Kadokami T, Lemster B, Frye CS, McTiernan CF, Feldman AM. Morphological and functional changes in cardiac myocytes isolated from mice overexpressing TNF-alpha. AJP. 2003;284(3):H960–9.

    CAS  Google Scholar 

  120. Petkova-Kirova PS, Gursoy E, Mehdi H, McTiernan CF, London B, Salama G. Electrical remodeling of cardiac myocytes from mice with heart failure due to the overexpression of tumor necrosis factor-alpha. AJP. 2006;290(5):H2098–107.

    CAS  Google Scholar 

  121. Klein RM, Vester EG, Brehm MU, Dees H, Picard F, Niederacher D, Beckmann MW, Strauer BE. Inflammation of the myocardium as an arrhythmia trigger. Z Kardiol. 2000;89 Suppl 3:24–35.

    PubMed  Google Scholar 

  122. Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K. Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation. 2004;109(1):120–4.

    PubMed  Google Scholar 

  123. De Ferrari GM, Schwartz PJ. Vagus nerve stimulation: from pre-clinical to clinical application: challenges and future directions. Heart Fail Rev. 2011;16(2):195–203.

    PubMed  Google Scholar 

  124. Sabbah HN, Ilsar I, Zaretsky A, Rastogi S, Wang M, Gupta RC. Vagus nerve stimulation in experimental heart failure. Heart Fail Rev. 2011;16(2):171–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. http://clinicaltrials.gov/ct2/show/NCT01385176?term=NECTAR&rank=1.

  126. http://clinicaltrials.gov/ct2/show/NCT01303718?term=INOVATE&rank=1.

  127. Olshansky B, Sabbah HN, Hauptman PJ, Colucci WS. Parasympathetic nervous system and heart failure. Pathophysiology and potential implications for therapy. Circulation. 2008;118:863–71.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. André Ng MBChB, PhD, FRCP(Glasg), FRCP, FESC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Brack, K.E., Ng, G.A. (2014). Autonomic Control of Cardiac Arrhythmia. In: Kibos, A., Knight, B., Essebag, V., Fishberger, S., Slevin, M., Țintoiu, I. (eds) Cardiac Arrhythmias. Springer, London. https://doi.org/10.1007/978-1-4471-5316-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5316-0_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5315-3

  • Online ISBN: 978-1-4471-5316-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics