Skip to main content

Law of the Iterated Logarithm

  • Chapter
Probability Theory

Part of the book series: Universitext ((UTX))

Abstract

For sums of independent random variables we already know two limit theorems: the law of large numbers and the central limit theorem. The law of large numbers describes for large \(n\in \mathbb{N}\) the typical behavior, or average value behavior, of sums of n random variables. On the other hand, the central limit theorem quantifies the typical fluctuations about this average value.

In Chapter 23, we will study atypically large deviations from the average value in greater detail. The aim of this chapter is to quantify the typical fluctuations of the whole process as n→∞. The main message is: While for fixed time n the partial sum S n deviates by approximately \(\sqrt{n}\) from its expected value (central limit theorem), the maximal fluctuation up to time n is of order \(\sqrt{n \log \log n}\) (Hartman–Wintner theorem, Theorem 22.11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azéma J, Yor M (1979) Le problème de Skorokhod: compléments à “Une solution simple au problème de Skorokhod”. In: Séminaire de probabilités, XIII, Univ Strasbourg, Strasbourg, 1977/78. Lecture notes in mathematics, vol 721. Springer, Berlin, pp 625–633

    Chapter  Google Scholar 

  2. Azéma J, Yor M (1979) Une solution simple au problème de Skorokhod. In: Séminaire de probabilités, XIII, Univ. Strasbourg, Strasbourg, 1977/78. Lecture notes in mathematics, vol 721. Springer, Berlin, pp 90–115

    Chapter  Google Scholar 

  3. Durrett R (2010) Probability: theory and examples, 4th edn. Cambridge series in statistical and probabilistic mathematics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Hartman P, Wintner A (1941) On the law of the iterated logarithm. Am J Math 63:169–176

    Article  MathSciNet  Google Scholar 

  5. Khintchine A (1923) Über dyadische Brüche. Math Z 18:109–116

    Article  MathSciNet  MATH  Google Scholar 

  6. Lévy P (1937) Théorie de l’Addition des Variables Aléatoires. Gauthier-Villars, Paris

    Google Scholar 

  7. Mörters P, Peres Y (2010) Brownian motion. Cambridge series in statistical and probabilistic mathematics. Cambridge University Press, Cambridge. With an appendix by Oded Schramm and Wendelin Werner

    Book  MATH  Google Scholar 

  8. Revuz D, Yor M (1999) Continuous martingales and Brownian motion, 3rd edn. Grundlehren der Mathematischen Wissenschaften, vol 293. Springer, Berlin

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Klenke, A. (2014). Law of the Iterated Logarithm. In: Probability Theory. Universitext. Springer, London. https://doi.org/10.1007/978-1-4471-5361-0_22

Download citation

Publish with us

Policies and ethics