Skip to main content

The Chapman–Kolmogorov and Bothe–Landau Equations

  • Chapter
  • First Online:
Medical Radiation Dosimetry

Abstract

The Gaussian and asymmetric collision energy loss pdfs that are derived in the following chapter arise from solutions to the two equations derived here. The form of the Chapman–Kolmogorov equation derived here is an integro-differential equation in the collision energy loss pdf \( f\left( {x,\Delta E} \right) \) where \( f\left( {x,\Delta E} \right)d\left( {\Delta E} \right) \) is the probability that a charged particle has lost kinetic energy between \( \Delta E \) and \( \Delta E+d\left( {\Delta E} \right) \) after penetrating to a depth x in a medium. The Bothe–Landau equation, also derived in this chapter, is a solution of the Chapman–Kolmogorov equation, and we will see in the following chapter how it can yield a Gaussian pdf of collision energy loss, provided a number of important assumptions are held. The asymmetric collision energy loss pdfs of Vavilov and Landau can be derived directly from the Chapman–Kolmogorov equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The third moment of energy loss and its use is a topic of Chap. 18.

Bibliography and Further Reading

  • McParland BJ. Nuclear medicine dosimetry: Advanced theoretical principles. Berlin: Springer; 2010.

    Book  Google Scholar 

  • Sigmund P. Particle penetration and radiation effects. Berlin: Springer; 2006.

    Google Scholar 

References

  • Bothe W. Die Gültigkeitsgrenzen des Gaußschen Fehlergesetzes für unabhängige Elementarfehlerquellen. Z Physik. 1921;4:161–77.

    Article  Google Scholar 

  • Kase K, Nelson WR. Concepts of radiation dosimetry. New York: Pergamon Press; 1978.

    Google Scholar 

  • Landau L. On the theory of energy loss of fast particles by ionization. J Phys USSR. 1944;8:201–6.

    CAS  Google Scholar 

  • Rossi B. High-energy particles. New York: Prentice Hall; 1952.

    Google Scholar 

  • Vavilov PV. Ionization losses of high-energy heavy particles. So Phys JETP. 1957;5:749–51.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

McParland, B.J. (2014). The Chapman–Kolmogorov and Bothe–Landau Equations. In: Medical Radiation Dosimetry. Springer, London. https://doi.org/10.1007/978-1-4471-5403-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5403-7_17

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5402-0

  • Online ISBN: 978-1-4471-5403-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics