Skip to main content

Moment Constraints in Convex Optimization for Segmentation and Tracking

  • Chapter
Advanced Topics in Computer Vision

Abstract

Convex relaxation techniques have become a popular approach to shape optimization as they allow to compute solutions independent of initialization to a variety of problems. In this chapter, we will show that shape priors in terms of moment constraints can be imposed within the convex optimization framework, since they give rise to convex constraints. In particular, the lower-order moments correspond to the overall area, the centroid, and the variance or covariance of the shape and can be easily imposed in interactive segmentation methods. Respective constraints can be imposed as hard constraints or soft constraints. Quantitative segmentation studies on a variety of images demonstrate that the user can impose such constraints with a few mouse clicks, leading to substantial improvements of the resulting segmentation, and reducing the average segmentation error from 12 % to 0.35 %. GPU-based computation times of around 1 second allow for interactive segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blake A, Zisserman A (1987) Visual reconstruction. MIT Press, Cambridge

    Google Scholar 

  2. Boyle JP, Dykstra RL (1986) An method for finding projections onto the intersection of convex sets in Hilbert spaces. In: Lecture Notes in Statistics, vol 37, pp 28–47

    Google Scholar 

  3. Caselles V, Kimmel R, Sapiro G (1995) Geodesic active contours. In: Proc IEEE int conf on computer vision, Boston, USA, pp 694–699

    Chapter  Google Scholar 

  4. Chan T, Esedoḡlu S, Nikolova M (2006) Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J Appl Math 66(5):1632–1648

    Article  MathSciNet  MATH  Google Scholar 

  5. Cremers D, Osher SJ, Soatto S (2006) Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. Int J Comput Vis 69(3):335–351

    Article  Google Scholar 

  6. Das P, Veksler O, Zavadsky V, Boykov Y (2008) Semiautomatic segmentation with compact shape prior. Image Vis Comput 27(1–2):206–219

    Google Scholar 

  7. Etyngier P, Segonne F, Keriven R (2007) Shape priors using manifold learning techniques. In: IEEE int conf on computer vision, Rio de Janeiro, October 2007

    Google Scholar 

  8. Foulonneau A, Charbonnier P, Heitz F (2006) Affine-invariant geometric shape priors for region-based active contours. IEEE Trans Pattern Anal Mach Intell 28(8):1352–1357

    Article  Google Scholar 

  9. Greig DM, Porteous BT, Seheult AH (1989) Exact maximum a posteriori estimation for binary images. J R Stat Soc B 51(2):271–279

    Google Scholar 

  10. Grenander U, Chow Y, Keenan DM (1991) Hands: a pattern theoretic study of biological shapes. Springer, New York

    Book  Google Scholar 

  11. Ising E (1925) Beitrag zur theorie des ferromagnetismus. Z Phys 23:253–258

    Article  Google Scholar 

  12. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331

    Article  Google Scholar 

  13. Kichenassamy S, Kumar A, Olver PJ, Tannenbaum A, Yezzi AJ (1995) Gradient flows and geometric active contour models. In: IEEE int conf on computer vision, pp 810–815

    Chapter  Google Scholar 

  14. Klodt M, Cremers D (2011) A convex framework for image segmentation with moment constraints. In: IEEE int conf on computer vision, Barcelona, Spain

    Google Scholar 

  15. Kolev K, Cremers D (2008) Integration of multiview stereo and silhouettes via convex functionals on convex domains. In: European conference on computer vision (ECCV), Marseille, France, October 2008

    Google Scholar 

  16. Kolev K, Klodt M, Brox T, Cremers D (2009) Continuous global optimization in multiview 3d reconstruction. Int J Comput Vis 84(1):80–96

    Article  Google Scholar 

  17. Lempitsky V, Kohli P, Rother C, Sharp T (2009) Image segmentation with a bounding box prior. In: IEEE int conf on computer vision, Kyoto, Japan

    Google Scholar 

  18. Luenberger DG (1997) Optimization by vector space methods, 1st edn. Wiley, New York

    Google Scholar 

  19. Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42:577–685

    Article  MathSciNet  MATH  Google Scholar 

  20. Osher SJ, Sethian JA (1988) Fronts propagation with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comp Physiol 79:12–49

    Article  MathSciNet  MATH  Google Scholar 

  21. Papoulis A, Pillai SU (2002) Probability, random variables, and stochastic processes, 4th edn. McGraw-Hill, New York

    Google Scholar 

  22. Rother C, Kolmogorov V, Blake A (2004) GrabCut: interactive foreground extraction using iterated graph cuts. ACM Trans Graph 23(3):309–314

    Article  Google Scholar 

  23. Schoenemann T, Cremers D (2009) A combinatorial solution for model-based image segmentation and real-time tracking. IEEE Trans Pattern Anal Mach Intell 32(7):1153–1164

    Article  Google Scholar 

  24. Unger M, Pock T, Cremers D, Bischof H (2008) Tvseg—interactive total variation based image segmentation. In: British machine vision conference (BMVC), Leeds, UK, September 2008

    Google Scholar 

  25. Veksler O (2008) Star shape prior for graph-cut image segmentation. In: Europ conf on computer vision, pp 454–467

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Klodt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Klodt, M., Steinbrücker, F., Cremers, D. (2013). Moment Constraints in Convex Optimization for Segmentation and Tracking. In: Farinella, G., Battiato, S., Cipolla, R. (eds) Advanced Topics in Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-5520-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5520-1_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5519-5

  • Online ISBN: 978-1-4471-5520-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics