Skip to main content

Consequential Life Cycle Environmental Impact Assessment

  • Chapter
  • First Online:
Unintended Consequences of Renewable Energy

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter describes the life cycle approach to energy chain analysis and the methodology of life cycle assessment (LCA). Consequential LCA (cLCA) is discussed in comparison with attributional LCA (aLCA). The methodological approach of environmental impact assessment (EIA) is also presented. The methods, with emphasis on cLCA, are discussed in the context of improving the knowledge of unintended consequences from various forms of renewable energy. The chapter presents a series of examples where cLCA are used to predict in advance, unanticipated impacts of different forms of renewable energy technologies throughout their life cycle, with particularly focus on the impact of biofuels production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term “overall environmental impact” is determined by the “environmental scarcity method”, or UBP method, where UBP is an acronym for umweltbelasttungspunkt. The UBP method aggregates all environmental impacts to a single number, which represents the total environmental impact. This is an example of a so-called EndPoint method” [7].

References

  1. Althaus H, Bauer C, Doka G, Dones R, Frischknecht R, Hellweg S, Humbert S, Jungbluth N, Köllner T, Loerincik Y, Margni M and Nemecek T (2010) Implementation of life cycle impact assessment methods. Dübendorf, CH: Swiss Centre for Life Cycle Inventories. http://www.ecoinvent.org/fileadmin/documents/en/03_LCIA-Implementation-v2.2.pdf. Accessed 02 Aug 2013

  2. Althaus H, Doka G, Dones R, Hischier R, Hellweg S, Nemecek T, Rebitzer G and Spielmann M (2007) Overview and methodology. Dübendorf, CH: Swiss Centre for Life Cycle Inventories. http://www.ecoinvent.org/fileadmin/documents/en/01_OverviewAndMethodology.pdf. Accessed 17 sep 2013

  3. Baumann H (1998) Life cycle assessment and decision making: theories and practices. Technical Environmental Planning. AFR report. Göteborg, Sweden: Chalmers University of Technology

    Google Scholar 

  4. Brookes A (2009) Environmental risk assessment and risk management (second.). In: Morris P, Therivel R (eds) Methods of environmental impact assessment. SPON PRESS, London. Taylor & Francis Group, pp 351–364. http://www.docstoc.com/docs/71241593/30592066-Methods-of-Environmental-Impact-Assessment. Accessed 17 sep 2013

  5. Chen I-C, Fukushima Y, Kikuchi Y, Hirao M (2012) A graphical representation for consequential life cycle assessment of future technologies—Part 1: methodological framework. Int J Life Cycle Assess 17:119–125

    Article  Google Scholar 

  6. Chen I-C, Fukushima Y, Kikuchi Y, Hirao M (2012) A graphical representation for consequential life cycle assessment of future technologies—Part 2: two case studies on choice of technologies and evaluation of technology improvements. Int J Life Cycle Assess 17:270–276

    Article  Google Scholar 

  7. Climatop (2011) Climatop includes sustainability criteria. Climatop—intelligent, climatefriendly products. http://www.climatop.ch/index.php/sustainability_en.html. Accessed 30 May 2013

  8. Curran M (2008) Life-cycle assessment. Human Ecology. Elsevier, pp 2168–2174

    Google Scholar 

  9. Dandres T, Gaudreault C, Tirado-Seco P, Samson R (2011) Assessing non-marginal variations with consequential LCA: application to European energy sector. Renew Sustain Energy Rev 15(6):3121–3132

    Article  Google Scholar 

  10. Dandres T, Gaudreault C, Tirado-Seco P, Samson R (2012) Macroanalysis of the economic and environmental impacts of a 2005–2025 European Union bioenergy policy using the GTAP model and life cycle assessment. Renew Sustain Energy Rev 16(2):1180–1192

    Article  Google Scholar 

  11. Dandres T (2012) Développement d’une méthode d’analyse du cycle de vie conséquentielle prospective macroscopique: évaluation d’une politique de bioénergie dans l’union européenne à l’horizon 2025. Thèse présentée en vue de l’obtention du diplôme de philosophiae doctor (génie chimique), Montreal, École Polytechnique De Montréal, Université De Montréal. http://publications.polymtl.ca/881/1/2012_ThomasDandres.pdf. Accessed 17 sep 2013

  12. Earles J, Halog A (2011) Consequential life cycle assessment: a review. Int J Life Cycle Assess 16(5):114–453

    Article  Google Scholar 

  13. Edwards R, Griesemann J-C, Larivé J-F and Mahieu V (2008) Well-to-wheels analysis of future automotive fuels and powertrains in the European context. CONCAWE, EUCAR and JRC

    Google Scholar 

  14. Ekvall T (1999) System expansion and allocation in life cycle assessment—with implications for wastepaper management. PhD Thesis, Gothenburg, Sweden, Chalmers University of Technology

    Google Scholar 

  15. Ekvall T (2002) Cleaner production tools: LCA and beyond. J Cleaner Prod 10:403–406

    Article  Google Scholar 

  16. Ekvall T, Weidema B (2004) System boundaries and input data in consequential life cycle inventory analysis. Int J Life Cycle Assess 9(3):161–171

    Article  Google Scholar 

  17. European Commission (1994) Biofuels. Report EUR 15647 EN. Brussels: DG XII

    Google Scholar 

  18. European Commission (1995) ExternE: Externalities of Energy. Prepared by ETSU and IER for DGXII: Science, Research & Development, Study EUR 16520-5 EN, Luxembourg

    Google Scholar 

  19. European Commission (2013) Environmental assessment. European Commission, Brussels. http://ec.europa.eu/environment/eia/home.htm. Accessed 29 April 2013

  20. Finnveden G, Hauschild M, Ekvall T, Guinee J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manage 91(1):1–21

    Article  Google Scholar 

  21. Fischer TB (2002) Strategic environmental assessment in transport and land use planning. Earthscan Publications, London

    Google Scholar 

  22. Flénet F (2010) Lessons and limits of the study on the impact of the first generation biofuels coordinated by the French environment and energy management agency [Enseignements et limites de l’étude sur l’impact des biocarburants de première génération coordonnée par l’Ademe]. OCL—Oleagineux Corps Gras Lipides 17(3):127–132

    Google Scholar 

  23. Guinee J, Heijungs R, Huppes G, Zamagni A, Masoni P, Buonamici R, Ekvall T, Rydberg T (2011) Life cycle assessment: past, present, and future. Environ Sci Technol 45(1):90–96

    Article  Google Scholar 

  24. Guinee J (ed) (2002) Handbook on life cycle assessment: operational guide to the ISO standards. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  25. IPCC (2012) Renewable energy sources and climate change mitigation. Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. http://srren.ipcc-wg3.de/report/IPCC_SRREN_Full_Report.pdf. Accessed 17 sep 2013

  26. Jeswani H, Azapagic A, Schepelmann P, Ritthoff M (2010) Options for broadening and deepening the LCA approaches. J Cleaner Prod 18(2):120–127

    Article  Google Scholar 

  27. Jury C, Benetto E, Koster D, Schmitt B, Welfring J (2010) Life cycle assessment of biogas production by monofermentation of energy crops and injection into the natural gas grid. Biomass Bioenergy 34(1):54–66

    Article  Google Scholar 

  28. Kaplan S, Garrick B (1981) On the quantitative definition of risk. Risk Anal 1:1–27

    Article  Google Scholar 

  29. Kim H, Kim S, Dale B (2009) Biofuels, land use change and greenhouse gas emissions: some unexplored variables. Environ Sci Technol 43(3):961–967

    Article  Google Scholar 

  30. Kuemmel B, Krüger Nielsen S, Sørensen B (1997) Life-cycle analysis of energy systems. Roskilde University Press, Roskilde

    Google Scholar 

  31. Melamu R, Blottnitz H (2011) 2nd Generation biofuels a sure bet? A life cycle assessment of how things could go wrong. J Cleaner Prod 19(2–3):138–144

    Article  Google Scholar 

  32. Morris P and Therivel R (eds) (2009) Methods of environmental impact assessment (Second). SPON PRESS, London. Taylor & Francis Group. http://www.docstoc.com/docs/71241593/30592066-Methods-of-Environmental-Impact-Assessment. Accessed 17 sep 2013

  33. Nieuwlaar E (2004) Life cycle assessment and energy systems. Encyclopedia of energy. Elvevier, pp 647–654

    Google Scholar 

  34. Rehl T, Lansche J, Muller J (2012) Life cycle assessment of energy generation from biogas—attributional versus consequential approach. Renew Sustain Energy Rev 16(6):3766–3775

    Article  Google Scholar 

  35. Reinhard J, Zah R (2009) Global environmental consequences of increased biodiesel consumption in Switzerland: consequential life cycle assessment. J Cleaner Prod 17(Suppl 1):46–56

    Article  Google Scholar 

  36. Reinhard J, Zah R (2011) Consequential life cycle assessment of the environmental impacts of an increased rapemethylester (RME) production in Switzerland. Biomass Bioenergy 35(6):2361–2373

    Article  Google Scholar 

  37. Reisdorph D (2011) Rebound effects & monetizing environmental impacts. Paper presented at the Life Cycle Assessment (LCA) XI, October 4. Power Point. Chicago, IL

    Google Scholar 

  38. Sanden B, Karlstroem M (2007) Positive and negative feedback in consequential life-cycle assessment. J Cleaner Prod 15(15):1469–1481

    Article  Google Scholar 

  39. Schmidt J (2010) Comparative life cycle assessment of rapeseed oil and palm oil. Int J Life Cycle Assess 15(2):183–197

    Article  Google Scholar 

  40. Schmidt J, Weidema B (2008) Shift in the marginal supply of vegetable oil. Int J Life Cycle Assess 13(3):235–239

    Article  Google Scholar 

  41. Silalertruksa T, Gheewala S, Sagisaka M (2009) Impacts of Thai bio-ethanol policy target on land use and greenhouse gas emissions. Appl Energy 86(Suppl 1):170–177

    Article  Google Scholar 

  42. Soimakallio S, Kiviluoma J, Saikku L (2011) The complexity and challenges of determining GHG (greenhouse gas) emissions from grid electricity consumption and conservation in LCA (life cycle assessment)—a methodological review. Energy 36(12):6705–6713

    Article  Google Scholar 

  43. Sokka L, Soimakallio S (2009) Assessing the life cycle greenhouse gas emissions of biorefineries. Paper presented at the VTT Symposium (Valtion Teknillinen Tutkimuskeskus). Technical Research Centre, Finland: VTT, pp 17–26. http://www.cabdirect.org/abstracts/20103325988.html;jsessionid=A0F426CA8D507015D9B687F35D37B9AF. Accessed 17 sep 2013 45.

  44. Sovacool B, Bulan L (2013) They’ll be dammed: the sustainability implications of the Sarawak Corridor of Renewable Energy (SCORE) in Malaysia. Sustain Sci 8:121–133

    Article  Google Scholar 

  45. Thiesen J, Christensen T, Kristensen T, Andersen R, Brunoe B, Gregersen T, Thrane M, Weidema B (2008) Rebound effects of price differences. Int J Life Cycle Assess 13(2):104–114

    Article  Google Scholar 

  46. Tillman A-M (2000) Significance of decision-making for LCA methodology. Environ Impact Assess Rev 20:113–123

    Article  Google Scholar 

  47. Tukker A (2000) Life cycle assessment as a tool in environmental impact assessment. Environ Impact Assess Rev 20:435–456

    Article  Google Scholar 

  48. Weidema B, Hischier R, Althaus H, Bauer C, Doka G, Dones R, Frischknecht R, Jungbluth N, Nemecek T, Primas A, Wernet G (2009) Code of practice. Swiss Centre for Life Cycle Inventories, Dübendorf. http://www.ecoinvent.org/fileadmin/documents/en/02_CodeOfPractice_v2.1.pdf. Accessed 17 sep 2013

  49. Wolf M, Pant R, Chomkhamsri K, Sala S, Pennington D (2012) The International Reference Life Cycle Data System (ILCD) Handbook. Towards more sustainable production and consumption for a resource-efficient Europe. European Commission, Ispra. Joint Research Centre. Institute for Environment and Sustainability

    Google Scholar 

  50. Zamagni A, Guinee J, Heijungs R, Masoni P, Raggi A (2012) Lights and shadows in consequential LCA. Int J Life Cycle Assess 17:904–918

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto Andersen .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Andersen, O. (2013). Consequential Life Cycle Environmental Impact Assessment. In: Unintended Consequences of Renewable Energy. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5532-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5532-4_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5531-7

  • Online ISBN: 978-1-4471-5532-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics