Skip to main content

Power Systems Stability Analysis Based on Classical Techniques in Work

  • Chapter
  • First Online:
Analysis, Control and Optimal Operations in Hybrid Power Systems

Abstract

This chapter presents a linearized Phillips–Heffron model of a parallel AC/DC power system in order to studying power system stability. In addition, a supplementary controller for a modeling back-to-back voltage source converter (BtB VSC) HVDC to damp low-frequency oscillations in a weakly connected system is proposed. Also, input controllability measurement for BtB VSC HVDC is investigated using relative gain array (RGA), singular value decomposition (SVD) and damping function (DF) and a supplementary controller is designed based on phase compensating method. In addition, a supplementary controller for a novel modeling VSC HVDC to damp low-frequency oscillations in a weakly connected system is proposed. The potential of the VSC HVDC supplementary controllers to enhance the dynamic stability is evaluated by measuring the electromechanical controllability through SVD analysis. The presented control scheme not only performs damping oscillations but also the voltage and power flow control can be achieved. Simulation results obtained by MATLAB verify the effectiveness of the VSC HVDC and its control strategy for enhancing dynamical stability. Moreover, a linearized model of a power system installed with a UPFC has been presented. UPFC has four control loops that, by adding an extra signal to one of them, increases dynamic stability and load angle oscillations are damped. To increase stability, a novel online adaptive controllers have been used analytically to identify power system parameters. Suitable operation of adaptive controllers to decrease rotor speed oscillations against input mechanical torque disturbances is confirmed by the simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chaturvedi DK, Malik OP, Kalra PK (2004) Performance of a generalized neuron based PSS in a multimachine power system, IEEE Trans 0885-8969/04

    Google Scholar 

  2. Wang HF, Swift FJ (1997) A unified model for the analysis of FACTS devices in damping power system oscillations, part I: single-machine infinite-bus power systems. IEEE Trans Power Delivery (12)2:941–946

    Google Scholar 

  3. Yang N, Liu Q, McCalley JD (1998) TCSC controller design for damping interarea oscillations. IEEE Trans Power Syst (13)4:1304–1310

    Google Scholar 

  4. Uzunovic E, Canizares CA, Reeve J (1999) EMTP studies of UPFC power oscillation damping. In: Proceedings of NAPS’99, San Luis Obispo, California, pp 155–163

    Google Scholar 

  5. Hsu YY, Wang L (1988) Damping of a parallel AC–DC power system using PID power system stabilizers and rectifier current regulators. IEEE Trans Energy Convers 3(3):540–547

    Article  Google Scholar 

  6. Badran SM, Choudhry MA (1993) Design of modulation controllers for AC/DC power systems. IEEE Trans Power Syst 8(4):1490–1496

    Article  Google Scholar 

  7. Hao C (1993) Design of modulation controller to damp power oscillations of parallel AC line in the Tianshenqiao to Guangdong HVDC transmission. IEEE Trans, 244–247

    Google Scholar 

  8. Al-Awami AT, Abdel-Magid YL, Abido MA (2007) A particle-swarm-based approach of power system stability enhancement with unified power flow controller. Electr Power Energy Syst 29:251–259

    Article  Google Scholar 

  9. Wang HF (1999) Damping function of unified power flow controller. IEE Proc Gen Trans Distrib (146)1:81–87

    Google Scholar 

  10. Qin C, Du WJ, Wang HF, Xu Q, Ju P (2005) Controllable parameter region and variable-parameter design of decoupling unified power flow controller. Transmission and distribution conference and exhibition, Asia and Pacific, IEEE/PES, Dalian, China

    Google Scholar 

  11. Kalyani RP, Venayagamoorthy GK (2004) Two separately continually online trained neurocontrollers for a unified power flow controller. IEEE international conference on intelligent sensing and information processing, Cat. No. 04EX783, pp 243–248

    Google Scholar 

  12. Keri AJF, Lombard X, Edris AA (1999) Unified power flow controller: modeling and analysis, IEEE Trans Power Delivery (14)2:648–654

    Google Scholar 

  13. Rouco L (2001) Coordinated design of multiple controllers for damping power system oscillation. Elec Power Energy Syst 21:517–530

    Google Scholar 

  14. Pal BC (2002) Robust damping of interarea oscillations with unified power flow controller. IEE Proc Gen Trans Distrib (149)6:733–738

    Google Scholar 

  15. Wang HF (1999) Application of modeling UPFC into multi-machine power systems. IEE Proc Gen Trans Disturb (146)3:306–312

    Google Scholar 

  16. Abido MA, Al-Awami AT, Abdel-Magid YL (2006) Simultaneous design of damping controllers and internal controllers of a unified power flow controller. IEEE power engineering society general meeting, Montreal

    Google Scholar 

  17. Abido MA (2001) Particle swarm optimization for multimachine power system stabilizer design. IEEE Power Eng Soc Summer Meet 3:1346–1351

    Article  Google Scholar 

  18. Villablanca XM, Valle JD, Rojas J, Abarca J, Rojas W (2000) A modified back-to-back HVDC system for 36-pulse operation. IEEE Trans (15)2:641–645

    Google Scholar 

  19. Padiyar KR (1990) HVDC power transmission systems, technology and system interactions. Wiley, India

    Google Scholar 

  20. Hammad A, Taylor C (1991) HVDC controllers for system dynamic performance. IEEE Trans Power Syst (6)2:743–752

    Google Scholar 

  21. Gjerdc JO, Flolo R, Gjengeddal T (1996) Use of HVDC and FACTS components for enhancement of power system stability. 8th mediterranean electro technical conference, MELECON vol 96, issue 2, pp 802–808, May 1996

    Google Scholar 

  22. Huang GM, Krishnaswamy V (2002) HVDC controls for power system stability. IEEE Power Eng Soc Summer Meeting 1:597–602

    Article  Google Scholar 

  23. Baker M, Abbott K, Gemmell B (2002) Frequency and system damping assistance from HVDC and FACTS controller. IEEE Power Eng Soc Summer Meeting 2:770–773

    Article  Google Scholar 

  24. Corsi S et al (2002) Emergency stability controls through HVDC links. IEEE Power Eng Soc Summer Meeting 2:774–779

    Article  Google Scholar 

  25. Banaei MR, Taheri N (2009) HVDC based damping controllers for power system stability. Telecommunications energy conference, INTELEC09, Incheon, Korea

    Google Scholar 

  26. Taheri N, Banaei MR (2010) A supplementary neural controller for novel modeling of VSC HVDC to enhance dynamic stability in a power system. PEDSTC conference, 17–18 Feb

    Google Scholar 

  27. Skogestad S, Postletwaite I (2005) Multivariable feedback control. Wiley, New York

    Google Scholar 

  28. Bristol EH (1966) On a new measure of interactions for multivariable process control. IEEE Trans Autom Control 11:133–134

    Article  Google Scholar 

  29. Larsen EV, Sanchez-Gasca JJ, Chow JH (1995) Concept for design of FACTS controllers to damp power swings. IEEE Trans PWRS 2(10):948–956

    Google Scholar 

  30. Shamsollahi P, Malik OP (1999) Application of neural adaptive power system stabilizer in a multi-machine power system. IEEE Trans Energy Convers (14)3:731–736

    Google Scholar 

  31. Tabatabaei NM, Taheri N, Nezhadali Baghan A (2011) Controllability of BTB VSC HVDC inputs based on power system stability. International conference on engineering and mathematics (ENMA 2001), Bilbao, Spain, 23–24 Jun 2011, pp 85–95

    Google Scholar 

  32. Hamdan AMA (1999) An investigation of the significance of singular value decomposition in power system dynamics. Electr Power Energy Syst 21:417–424

    Article  Google Scholar 

  33. Abdel-Magid YL, Abido MA (2004) Robust coordinated design of excitation and TCSC-based stabilizers using genetic algorithm. Electr Power Syst Res 69:129–141

    Article  Google Scholar 

  34. Nazarpour D, Hosseini SH, Gharehpetian GB (2005) An adaptive STATCOM based stabilizer for damping generator oscillations, ELECO Conference, Bursa, Turkey, 7–11 Dec 2005, pp 60-64

    Google Scholar 

  35. Cheng CH, Hsu YY (1992) Damping of generator oscillations using an adaptive static VAR compensator. IEEE Trans Power Syst (7)2:718

    Google Scholar 

  36. Tabatabaei NM, Hashemi A, Taheri N, Sadikoglu FM (2011) A novel on line adaptive based stabilizer for dynamic stability improvement with UPFC. 7th international conference on technical and physical problems of power engineering (ICTPE-2011), Near East University, Lefkosa, Northern Cyprus, 7–9 Jul 2011, vol 57, Code 03EPS31, pp 280–285

    Google Scholar 

  37. Tabatabaei NM, Taheri N, Nezhadali Baghan A, Khudiev AT (2011) A novel modeling and controlling of HVDC transmission system for enhancing dynamic stability in a power system. 7th international conference on technical and physical problems of power engineering (ICTPE-2011), Near East University, Lefkosa, Northern Cyprus, 7–9 Jul, vol 33, Code 03EPS07, pp 158–164

    Google Scholar 

  38. Yam CM, Haque MH (2005) A SVD based controller of UPFC for power flow control. 15th power system computation conference, Aug 2005, Session 12, Paper 2, pp 1–7

    Google Scholar 

  39. Nabavi-Niaki A, Iravani MR (1996) Steady-state and dynamic models of unified power flow controller (UPFC) for power system studies. IEEE Trans Power Syst (11)4:1937–1943

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser Mahdavi Tabatabaei .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix 1. Parameters of Test System (pu) for BtB VSC HVDC Network

Machine and Exciter: \( \begin{gathered} x_{d} = 1,\;x_{q} = 0.6,\;x_{d}^{\prime} = 0.3,\;D = 0,\;M = 8, \hfill \\ T_{\rm do}^{\prime} = 5.044,\;f = 60,\;v_{\rm ref} = 1,\;K_{A} = 120,\;T_{A} = 0.015 \hfill \\ \end{gathered} \)

Transmission line and transformer reactance: \( X_{\rm tl} = 0.15,\;X_{\rm lb} = 0.6,\;X_{\rm sp} = X_{s} = 0.15 \)

BtB VSC HVDC: \( V_{\rm dc} = 3,\;C_{\rm dc} = 1 \).

Neural controller: two multilayer feed forward neural network with activation function: \( a\,\tanh (\mathrm{bx}) \).

Hidden and output layer for identifier includes 4 and 1 neuron, respectively with \( a = b = 1.2,\;Eta = 0.4. \)

Hidden and output layer for controller includes 3 and 1 neuron, respectively with \( a = 17,b = 0.65,\;Eta = 0.22 \).

1.2 Appendix 2. Parameters of Test System (pu) for VSC HVDC Network

Machine and Exciter: \( \begin{gathered} x_{d} = 1,\;x_{q} = 0.6,\;x_{d}^{\prime} = 0.3,\;D = 0,\;M = 8, \hfill \\ T_{\rm do}^{\prime} = 5.044,\;f = 60,\;v_{\rm ref} = 1,\;K_{A} = 120,\;T_{A} = 0.015 \hfill \\ \end{gathered} \)

Transmission line and transformer reactance: \( x_{t} = 0.1,\;x_{l} = 1,\;x_{r} = x_{i} = 0.15 \)

VSC HVDC: \( V_{\rm dcr} = 2,V_{\rm dci} = 1.95,\;C_{r} = C_{i} = 2,\;L_{1} = L_{2} = 0.09,\;C = 0.09 \)

1.3 Appendix 3. Constant Coefficients of the Linearised Dynamic Model of Eq. (59)

$$\begin{aligned} & Z = 1 + \frac{{x_{l}}}{{x_{r}}},\;A = x_{t} + x_{l}+ \frac{{x_{t}}}{{x_{r}}},\;[A] = A + Zx_{d}^{\prime},\;[B] = A +Zx_{q}\\ & C_{1} = \frac{{V_{b} \cos (\delta)}}{[B]},\;C_{2} = -\frac{{x_{l} M_{r} V_{\rm dc} \sin (\varphi_{r})}}{{2x_{r}[B]}},\;C_{3} = \frac{{x_{l} V_{\rm dc} \cos (\varphi_{r})}}{{2x_{r}[B]}},\;C_{4} = \frac{{x_{l} M_{r} \cos (\varphi_{r})}}{{2x_{r}[B]}}\\ & C_{5} = \frac{Z}{A},\;C_{6} = \frac{{V_{b} \sin(\delta)}}{[A]},\;C_{7} = - \frac{{x_{l} M_{r} V_{\rm dc} \cos(\varphi_{r})}}{{2x_{r} [A]}},\;C8 = - \frac{{x_{l} V_{\rm dc} \sin(\varphi_{r})}}{{2x_{r} [A]}},\\ & C_{9} = - \frac{{x_{l} M_{r}V_{\rm dc} \cos (\varphi_{r})}}{{2X_{r} [A]}} \\ & C_{a} = (x_{q} -x_{d}^{\prime})I_{t},\;C_{b} = E_{q}^{\prime} + (x_{q} -x_{d}^{\prime}),\;K_{1} = C_{b} C_{1} + C_{a} C_{6},\\ & K_{2} =I_{t} (1 + (x_{q} - x_{d}^{\prime})C_{5})\\ & K_{\rm pdcr} = C_{b}C_{4} + C_{a} C_{9},\;K_{{p{M_r}}} = C_{b} C_{3} + C_{a}C_{8},\;K_{p\varphi r} = C_{b} C_{2} + C_{a} C_{7} \\ & K_{3} = 1 +JC_{5},\;K_{4} = JC_{6},\\ & K_{q\varphi r} = JC_{7},\;K_{{q{M_r}}}= JC_{8},\;K_{\rm qdcr} = JC_{9}\\ & K_{5} = L(V_{\rm td} x_{q}C_{1} - V_{\rm tq} x_{d}^{\prime} C_{6}),\;K_{6} = LV_{\rm tq} (1 -x_{d}^{\prime} C_{5})\\ & K_{{{V_{\rm dc}}r}} = L(V_{\rm td} x_{q}C_{4} - V_{\rm tq} x_{d}^{\prime} C_{9}),K_{{V{M_r}}} = L(V_{\rm td}x_{q} C_{3} - V_{\rm tq} x_{d}^{\prime} C_{8}),K_{V\varphi r} =L(V_{\rm td} x_{q} C_{2} - V_{\rm tq} x_{d}^{\prime} C_{7})\\ &x_{d}- x_{d}^{\prime} = J,\;L = \frac{1}{{V_{t}}},\;E =\frac{{x_{d}^{\prime} + x_{t}}}{{x_{r}}},\;F = \frac{{x_{q} +x_{t}}}{{x_{r}}}\\ & C_{10} = EC_{5} - \frac{1}{{x_{r}}},\;C_{11} =EC_{6},\;C_{12} = EC_{7} - \frac{{M_{r}}}{{2x_{r}}}V_{\rm dcr} \sin(\varphi_{r}),\\ & C_{13} = \frac{1}{{2x_{r}}}M_{r} \cos(\varphi_{r}) + EC_{8} \\& C_{14} = \frac{1}{{2x_{r}}}\cos(\varphi_{r}) + EC_{9},\;C_{15} = FC_{1},\;C_{16} =\frac{1}{{2x_{r}}}V_{\rm dcr} \sin (\varphi_{r}) + FC_{2},\\ &C_{17} = - \frac{1}{{2x_{r}}}M_{r} \cos (\varphi_{r}) + FC_{4} \\ &C_{18} = FC_{3} - \frac{1}{{2x_{r}}}V_{\rm dcr} \cos(\varphi_{r}),\;C_{19} = \frac{1}{{x_{i}}}V_{\rm bd},\;C_{20} =\frac{1}{{2x_{i}}}M_{i} \sin (\varphi_{i}),\\ & C_{21} =\frac{1}{{2x_{i}}}V_{\rm dcr} \sin (\varphi_{i}) \\& C_{22} =\frac{1}{{2x_{i}}}M_{i} V_{\rm dci} \cos (\varphi_{i}),\;C_{23} =\frac{1}{{x_{i}}}V_{\rm bq},\;C_{24} = - \frac{1}{{2x_{i}}}M_{i}\cos (\varphi_{i}),\\ & C_{25} = - \frac{1}{{2x_{i}}}V_{\rm dci}\cos (\varphi_{i}),\;C_{26} = \frac{1}{{2x_{i}}}V_{\rm dci} \sin(\varphi_{i}) \\ & f_{1} = [0.5\cos (\varphi_{i})I_{\rm id} +0.5\sin (\varphi_{i})I_{\rm iq}],\;f_{2} = - [- 0.5\sin(\varphi_{i})I_{\rm id} + 0.5\cos (\varphi_{i})I_{\rm iq}] \\& f_{3}= - 0.5M_{i} \cos (\varphi_{i}),\;f_{4} = - 0.5M_{i} \sin(\varphi_{i}),\;f_{5} = - [0.5\cos (\varphi_{r})I_{\rm rd} + 0.5\sin(\varphi_{i})I_{\rm rq}]\\& f_{6} = - [- 0.5\sin (\varphi_{i})I_{\rm rd} + 0.5\cos(\varphi_{i})I_{\rm rq}],\;f_{7} = - 0.5M_{r} \cos(\varphi_{r}),\;f_{4} = - 0.5M_{r} \sin (\varphi_{r}) \\ & C_{27} =f_{3} C_{19} + f_{4} C_{23},\;C_{28} = f_{3} C_{20} + f_{4}C_{24},\;C_{29} = f_{1} + f_{3} C_{21} + f_{4} C_{25},\\ & C_{30} =f_{2} + f_{3} C_{22} + f_{4} C_{26}\\ & C_{31} = f_{7} C_{11} +f_{8} C_{15},\;C_{32} = f_{7} C_{10},\;C_{33} = f_{7} C_{14} + f_{8}C_{17},\;C_{34} = f_{5} + f_{7} C_{13} + f_{8} C_{18},\\ & C_{35} =f_{6} + f_{7} C_{12} + f_{8} C_{16}\end{aligned}$$

1.4 Appendix 4. The Test System Parameters for UPFC HVDC Network

Generator: \( M = 2H = 8. 0 {\text{ MJ/MVA}} \), \( D = 0. 0 \), \( T_{\rm do}^{\prime} = 5. 0 4 4 {\text{ s}} \), \( x_{d} = 1. 0 {\text{ pu}} \), \( x_{q} = 0. 6 {\text{ pu}} \), \( x_{d}^{\prime} = 0. 3 {\text{ pu}} \)

Excitation System: \( K_{a} = 1 0 0 \), \( T_{a} = 0. 0 1 {\text{ s}} \)

Transformer: \( X_{\rm tE} = 0. 1 {\text{ pu}} \), \( X_{E} = X_{B} = 0. 1 {\text{ pu}} \), \( X_{E} = X_{B} = 0. 1 {\text{ pu}} \)

Transmission Line: \( X_{\rm BV} = 0. 3 {\text{ pu}} \), \( X_{e} = X_{\rm BV} + X_{B} + X_{tE} = 0. 5 {\text{ pu}} \)

Operating Condition: \( V_{t} = 1. 0 {\text{ pu}} \), \( P_{e} = 0. 8 {\text{ pu}} \), \( V_{b} = 1. 0 {\text{ pu}} \), \( f = 6 0 {\text{ Hz}} \)

DC Link: \( V_{\rm dc} = 2 {\text{ pu}} \), \( C_{\rm dc} = 1 {\text{ pu}} \)

1.5 Appendix 5. Adaptive Controller Parameters for UPFC HVDC Network

$$ \begin{aligned}& A_{m} = (q - 0. 0 1)(q - 0. 0 3)(q - 0. 0 2)(q - 0. 1)(q + 0. 1) \\ & B_{m} = q^{ 4} \\ & A_{o} = { 1} {^{\circ} B}_{m} = {^{\circ} B} = m = { 4} \\ & {^{\circ} A}_{m} = {^{\circ} A} = n = 5 \end{aligned}$$

1.6 Appendix 6. K Parameters for UPFC HVDC Network

$$\begin{aligned} & K_{1} = \frac{{\left({V_{\rm td} - I_{\rm tq} x_{d}^{\prime}} \right)(x_{dE} - x_{dt})V_{b} \sin \delta}}{{x_{d\Sigma}}} + \frac{{(x_{q} I_{\rm td} + V_{\rm tq})(x_{\rm qt} - x_{\rm qE})V_{b} \cos \delta}}{{x_{q\Sigma}}} \\ & K_{2} = \frac{{- (x_{\rm BB} + x_{E})V_{\rm td}}}{{x_{d\Sigma} x_{d}}} + \frac{{(x_{\rm BB} + x_{E})x_{d}^{\prime} I_{\rm tq}}}{{x_{d\Sigma}}} \\ & K_{3} = 1 + \frac{{(x_{d}^{\prime} - x_{d})(x_{\rm BB} + x_{E})}}{{x_{d\Sigma}}} \\ & K_{4} = \frac{{(x_{d}^{\prime} - x_{d})(x_{dE} - x_{dt})V_{b} \sin \delta}}{{x_{d\Sigma}}}\\ & K_{5} = \frac{{V_{\rm td} x_{q} (x_{\rm qt} - x_{qE})V_{b} \cos \delta}}{{V_{t} x_{q\Sigma}}} - \frac{{V_{\rm tq} x_{d}^{\prime} (x_{dtE} - x_{dt})V_{b} \sin \delta}}{{V_{t} x_{d\Sigma}}} \\ & K_{6} = \frac{{V_{\rm tq} (x_{d\Sigma} + x_{d}^{\prime} (x_{\rm BB} + x_{E}))}}{{V_{t} x_{d\Sigma}}} \\ & K_{7} = 0.25C_{\rm dc} (V_{b} \sin \delta (m_{E} \cos \delta_{E} x_{dE} - m_{B} \cos \delta_{B} x_{dt})) - \hfill \\ \frac{{m_{B} \cos \delta_{B} x_{dt}}}{{x_{d\Sigma}}} \hfill \\ V_{b} \cos \delta (m_{B} \sin \delta_{B} x_{qt} - m_{E} \sin \delta_{E} x_{\rm qe}\\ & K_{8} = - 0.25\frac{{m_{B} \cos \delta_{B} x_{\text{E}} + m_{E} \cos \delta_{E} x_{\rm BB}}}{{x_{d\Sigma}}} \\ & K_{9} = 0.25C_{\rm dc}(\frac{{m_{B} \sin \delta_{B} (m_{B} \cos \delta_{B} x_{dt} - m_{E} \cos \delta_{E} x_{dE})}}{{2x_{d\Sigma}}} + \hfill \\ \frac{{m_{E} \sin \delta_{E} (m_{E} \cos \delta_{E} x_{Bd} - m_{B} \cos \delta_{B} x_{dt})}}{{2x_{d\Sigma}}} \hfill \\ \frac{{m_{B} \cos \delta_{B} (m_{B} \sin \delta_{B} x_{qt} - m_{E} \sin \delta_{E} x_{qE})}}{{2x_{q\Sigma}}} + \hfill \\ \frac{{m_{E} \cos \delta_{E} (- m_{B} \sin \delta_{B} x_{qE} - m_{E} \sin \delta_{E} x_{Bq})}}{{2x_{q\Sigma}}}\\ & K_{\rm pe} = \frac{{(V_{\rm td} - I_{\rm tq} x_{d}^{\prime})(x_{Bd} - x_{dE})V_{\rm dc} \sin \delta_{E}}}{{2x_{d\Sigma}}} + \hfill \\ \frac{{(x_{q} I_{\rm td} + V_{\rm tq})(x_{Bq} - x_{qE})V_{\rm dc} \cos \delta_{E}}}{{2x_{q\Sigma}}}\\ & K_{p\delta E} = \frac{{\left({V_{\rm td} - I_{\rm tq} x_{d}^{\prime}} \right)(x_{Bd} - x_{dE})V_{\rm dc} m_{E} \cos \delta_{E}}}{{2x_{d\Sigma}}} + \hfill \\ \frac{{(x_{q} I_{\rm td} + V_{\rm tq})(- x_{Bq} + x_{qE})V_{\rm dc} m_{E} \sin \delta_{E}}}{{2x_{q\Sigma}}}\\ & K_{\rm pb} = \frac{{\left({V_{\rm td} - I_{\rm tq} x_{d}^{\prime}} \right)(x_{dt} - x_{dE})x_{\rm dc} \sin \delta_{B}}}{{2x_{d\Sigma}}} + \hfill \\ \frac{{(x_{q} I_{\rm td} + V_{\rm tq})(x_{\rm qt} - x_{qE})V_{\rm dc} \cos \delta_{B}}}{{2x_{q\Sigma}}}\\ & K_{p\delta B} = \frac{{\left({V_{\rm td} - I_{\rm tq} x_{d}^{\prime}} \right)(x_{dE} + x_{\rm dt})V_{\rm dc} m_{B} \cos \delta_{B}}}{{2x_{d\Sigma}}} + \hfill \\ \frac{{(x_{q} I_{\rm td} + V_{\rm tq})(- x_{\rm qt} + x_{\rm qE})V_{\rm dc} m_{B} \sin \delta_{B}}}{{2x_{q\Sigma}}}\\ & K_{\rm pd} = (V_{\rm td} - I_{\rm tq} x_{d}^{\prime})(\frac{{(x_{dt} - x_{dE})m_{B} \sin \delta_{B}}}{{2x_{d\Sigma}}} + \hfill \\ \frac{{(x_{Bd} - x_{dE})m_{E} \sin \delta_{E}}}{{2x_{d\Sigma}}} + \hfill \\ (x_{q} I_{\rm td} + V_{\rm td})(\frac{{(x_{\rm qt} - x_{qE})m_{B} \cos \delta_{B}}}{{2x_{q\Sigma}}} + \hfill \\ \frac{{(x_{Bq} - x_{qE})m_{E} \cos \delta_{E}}}{{2x_{q\Sigma}}}\\ & K_{\rm qe} = - \frac{{\left({x_{d}^{\prime} - x_{d}} \right)(x_{Bd} - x_{dE})V_{\rm dc} \sin \delta_{E}}}{{2x_{d\Sigma}}}\\ & K_{q\delta e} = - \frac{{\left({x_{d}^{\prime} - x_{d}} \right)(x_{Bd} - x_{dE})m_{E} V_{\rm dc} \cos \delta_{E}}}{{2x_{d\Sigma}}}\\ & K_{\rm qb} = - \frac{{\left({x_{d}^{\prime} - x_{d}} \right)(x_{dt} - x_{dE})V_{\rm dc} \sin \delta_{B}}}{{2x_{d\Sigma}}}\\ & K_{q\delta B} = - \frac{{\left({x_{d}^{\prime} - x_{d}} \right)(x_{dE} - x_{dt})m_{B} V_{\rm dc} \cos \delta_{B}}}{{2x_{\Sigma}}}\\ & K_{\rm qe} = - \left({x_{d}^{\prime} - x_{d}} \right)(\frac{{(x_{Bd} - x_{dE})m_{E} \sin \delta_{E}}}{{2x_{d\Sigma}}} + \frac{{(x_{dt} - x_{dE})m_{B} \sin \delta_{B}}}{{2x_{d\Sigma}}}) \\ & K_{\rm ve} = \frac{{V_{\rm td} (x_{Bq} - x_{qE})V_{\rm dc} \cos \delta_{E}}}{{2V_{t} x_{q\Sigma}}} - \frac{{V_{tq} (x_{Bd} - x_{dE})V_{\rm dc} \sin \delta_{E}}}{{2V_{t} x_{d\Sigma}}}\\ & K_{v\delta E} = \frac{{V_{\rm td} x_{q} (x_{qE} - x_{Bq})m_{E} V_{\rm dc} \sin \delta_{E}}}{{2V_{t} x_{q\Sigma}}} - \frac{{V_{\rm tq} x_{d}^{\prime} (x_{Bd} - x_{dE})m_{E} V_{\rm dc} \cos \delta_{E}}}{{2V_{t} x_{q\Sigma}}}\\ & K_{\rm vb} = \frac{{V_{td} x_{q} (x_{\rm qt} - x_{qE})V_{\rm dc} \cos \delta_{E}}}{{2V_{t} x_{q\Sigma}}} - \frac{{V_{\rm tq} x_{d}^{\prime} (x_{dt} - x_{dE})V_{\rm dc} \sin \delta_{E}}}{{2V_{t} x_{d\Sigma}}} \\ & K_{v\delta b} = \frac{{V_{\rm td} x_{q} (x_{qE} - x_{\rm qt})m_{B} V_{\rm dc} \sin \delta_{E}}}{{2V_{t} x_{q\Sigma}}} + \frac{{V_{\rm tq} m_{B} x_{d}^{\prime} (x_{dE} + x_{dt})V_{\rm dc} \cos \delta_{E}}}{{2V_{t} x_{d\Sigma}}} \\ & K_{\rm vd} = \frac{{V_{\rm td} x_{q} (x_{Bq} - x_{qE})m_{E} \cos \delta_{E}}}{{2V_{t} x_{q\Sigma}}} + \frac{{(x_{\rm qt} - x_{qE})m_{B} \cos \delta_{B}}}{{2x_{q\Sigma}}} \hfill \\ \frac{{V_{tq} m_{E} x_{d}^{\prime} (x_{Bd} - x_{dE})\sin \delta_{E}}}{{2V_{t} x_{q\Sigma}}} + \frac{{m_{B} (x_{dt} - x_{qE})\sin \delta_{E}}}{{2x_{d\Sigma}}}\\ & K_{\rm ce} = 0.25C_{\rm dc} \frac{{V_{\rm dc} \sin \delta_{E} (m_{E} \cos \delta_{E} x_{Bd} - m_{B} \cos \delta_{B} x_{dE})}}{{2x_{d\Sigma}}} + \hfill \\ \frac{{V_{\rm dc} \cos \delta_{E} (m_{E} \sin \delta_{E} x_{Bq} - m_{B} \sin \delta_{B} x_{qE})}}{{2x_{q\Sigma}}} \\ & K_{c\delta e} = \frac{{0.25m_{E}}}{{C_{\rm dc}}}(\cos \delta_{E} I_{Eq} - \sin \delta_{E} I_{Ed}) + \hfill \\ \frac{0.25}{{C_{\rm dc}}}(m_{E} V_{\rm dc} \cos \delta_{E} \frac{{(m_{E} \cos \delta_{E} x_{Bd} - m_{B} \cos \delta_{B} x_{dE})}}{{2x_{d\Sigma}}} + \hfill \\ m_{E} V_{\rm dc} \sin \delta_{E} \frac{{(m_{B} \sin \delta_{B} x_{qE} + m_{E} \sin \delta_{E} x_{Bq})}}{{2x_{q\Sigma}}}) \\ & K_{cb} = 0.25C_{\rm dc} \frac{{V_{\rm dc} \sin \delta_{B} (- m_{E} \cos \delta_{E} x_{dE} + m_{B} \cos \delta_{B} x_{dt})}}{{2x_{d\Sigma}}} + \hfill \\ \frac{{V_{\rm dc} \cos \delta_{B} (m_{B} \sin \delta_{E} x_{qt} - m_{E} \sin \delta_{E} x_{qE})}}{{2x_{q\Sigma}}} \\ & K_{c\delta B} = \frac{{0.25m_{B}}}{{C_{\rm dc}}}(\cos \delta_{B} I_{Bq} - \sin \delta_{B} I_{Bd}) + \hfill \\ \frac{0.25}{{C_{\rm dc}}}(m_{B} V_{\rm dc} \cos \delta_{B} \frac{{(m_{E} \cos \delta_{E} x_{dE} + m_{B} \cos \delta_{B} x_{dt})}}{{2x_{d\Sigma}}} + \hfill \\ m_{B} V_{\rm dc} \sin \delta_{B} \frac{{(- m_{B} \sin \delta_{E} x_{\rm qt} + m_{E} \sin \delta_{E} x_{qE})}}{{2x_{q\Sigma}}}) \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Mahdavi Tabatabaei, N., Demiroren, A., Taheri, N., Hashemi, A., Boushehri, N.S. (2013). Power Systems Stability Analysis Based on Classical Techniques in Work. In: Bizon, N., Shayeghi, H., Mahdavi Tabatabaei, N. (eds) Analysis, Control and Optimal Operations in Hybrid Power Systems. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5538-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5538-6_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5537-9

  • Online ISBN: 978-1-4471-5538-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics