Skip to main content

Thermochemistry of Thoria-based Fuel and Fission Products Interactions

  • Chapter
  • First Online:
Thoria-based Nuclear Fuels

Part of the book series: Green Energy and Technology ((GREEN))

  • 1027 Accesses

Abstract

Thermochemical studies on fuel and fission products have significantly contributed to our understanding of the chemical behavior of nuclear fuels during normal operation and in possible accident situations. These studies help in modeling of the operating fuel materials and can predict the fuel performance. An understanding of the vaporization behavior of fuels and fission products is essential for estimating the redistribution of various elements in the steep temperature gradients that exist across the fuel pellets. The buildup of fission product elements influence the change of thermodynamic potentials of oxygen, carbon, or nitrogen in oxide, carbide, or nitride fuels. The change in oxygen potential in an oxide fuel element affects the chemical constitution of the fuel. The oxygen potential of the fuel at different oxygen to metal ratio is the key parameter in understanding the oxidation behavior and the resultant chemistry of the fission products inside the oxide fuels. The thoria-based fuels with low urania content exhibits a very fast growth of the potential at the onset of hyperstoichiometry, while that of pure urania exhibits a better buffering action against the increase in the potential. In order to understand the oxygen redistribution among fission products and clad, knowledge of the oxygen potentials of their metal/metal oxide systems and chemical transport property of the oxide fuel for oxygen should be known. The thermodynamic properties of the possible chemical states of alkali and alkaline earth fission products and their relative stabilities as thorates, zirconates, iodides, tellurides, uranates, molybdites, molybdates, etc. also influence the distribution of oxygen among the fission products. A review of thermochemical properties of possible binary and ternary oxides resulting from the fuel-fission products’ interactions which influence the fuel performance will be presented considering the oxygen transport and other kinetic aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bailly H, Menessier D, Prunier C (1999) The nuclear fuel of pressurized water reactors and fast reactors-design and behavior. Intercept Ltd., Paris

    Google Scholar 

  2. Ali(Basu) M, Mishra M, Bharadwaj SR, Das D (2010) Thermodynamic and transport properties of thoria–urania fuel of advanced heavy water reactor. J Nucl Mater 403:204–215. doi:10.1016/j.jnucmat.2010.01.009

    Article  Google Scholar 

  3. Matzke Hj (1992) Diffusion processes in nuclear fuels. In: Agarwala RP (ed) Diffusion processes in nuclear materials, Elsevier, North Holland

    Google Scholar 

  4. Brunn H, Hoppe R (1977) Über ordungsvarianten des NaCl-Typs. Neuekubische forman von NaMO2 (M = Sc, Y, Dy, Tm, Yb, Lu), K2MO3, Rb2MO3 (M = Ce, Pr, Th) und Cs2ThO3. Z.Anorg. Allg Chem 430:144–154. doi:10.1002/zaac.19774300114

    Article  Google Scholar 

  5. Pies W, Weiss A (1977): e256, XVI.4.1 Oxo-compounds of thorium (oxothorates), XVI.4.2 oxo-compounds of protactinium (oxoprotactinates). In: Hellwege K-H, Hellwege AM (eds). Springer materials—the Landolt-Börnstein database (http://www.springermaterials.com). doi:10.1007/10201569_16

  6. Pies W, Weiss A (1977): f797, XIX.2.1 simple oxo-compounds of molybdenum (oxomolybdates). In: Hellwege, K.-H., Hellwege, A.M. (ed.). In: Hellwege K-H, Hellwege AM (eds). Springer materials—The Landolt-Börnstein database (http://www.springermaterials.com). doi:10.1007/10201577_18

  7. Kaczorowski D (2004): Ternary actinide pnictides and chalcogenides containing s and p electron elements. In Wijn HPJ (ed) Springer materials—the Landolt-Börnstein database (http://www.springermaterials.com). DOI: 10.1007/10838073_10

  8. López ML, Viega ML, Jerez A, Pico C (1992) Crystal and X-ray powder diffraction data for mixed oxides MTe2O6 (M = Ce, Th). Powder Diffr 7:32

    Article  Google Scholar 

  9. Olander D (2009) Nuclear fuels: present and future. J Nucl Mater 389:1–22

    Article  Google Scholar 

  10. Hofmann P, Spino J (1985) Conditions under which cd can cause scc failure of zircaloy tubing. J Nucl Mater 127:205–220

    Article  Google Scholar 

  11. Schram RPC (2005) Analysis of the oxygen potential of Th1−y U y O1+x . J Nucl Mater 344:223–229. doi:10.1016/j.jnucmat.2005.04.046

    Article  Google Scholar 

  12. Cubicciotti D, Sanecki JE (1978) Characterization of deposits on inside surfaces of LWR cladding. J Nucl Mater 78:96–111

    Article  Google Scholar 

  13. Ugajin M, Shiratori T, Shiba K (1979) Chemical form of the solid fission products in (Th, U)O2 simulating high burnup. J Nucl Mater 84:26–38

    Article  Google Scholar 

  14. Kinoshita H, Uno M, Yamanaka S (2004) Stability evaluation of fluorite structure phases in ZrO2–MO2 (M = Th, U, Pu, Ce) systems by thermodynamic modeling. J Alloy Comp 370:25–30

    Article  Google Scholar 

  15. Holleck H, Wagner W (1968) Oxyde, Nitrures et Carbures Ternaires de U–Ce–Zr.Thermodyn Nucl Mater 1967(IAEA Vienna 1968):667–681

    Google Scholar 

  16. Ugajin M, Shiba K (1980) The chemical state of burnup-simulated (Th, U)O2 at high oxygen potential. J Nucl Mater 91:227–230

    Article  Google Scholar 

  17. Sibieude F, Foex M (1975) Phases et transitions de phases a haute temperature observees dan les systemes ThO2–Ln2O3 (Ln = lanthanide et yttrium). J Nucl Mater 56:229–238

    Article  Google Scholar 

  18. Kellar C, Berndt U, Engerer H, Leitner L (1972) Phasengleichgewichte in den systemen thoriumoxid-lanthanidenoxide. J Solid State Chem 4:453–465

    Article  Google Scholar 

  19. Cordfunke EHP, Konings RJM (1990) Thermochemical data for reactor materials and fission products. Elsevier, Amsterdam

    Google Scholar 

  20. Mishra R, Ali (Basu) M, Bharadwaj SR, Kerkar AS, Das D, Dharwadkar SR (1999) Thermodynamic stability of barium thorate from a Knudsen effusion study. J Alloys Comp 290:97–102

    Article  Google Scholar 

  21. Bharadwaj SR, Mishra R, Ali (Basu) M, Das D, Kerkar AS, Dharwadkar SR (1999) Gibbs energy of formation of barium thorate by reactive carrier gas technique. J Nucl Mater 275:201–205

    Article  Google Scholar 

  22. Ali (Basu) M, Mishra R, Kerkar AS, Bharadwaj SR, Das D (2001) Gibbs energy of formation of Ba(OH)2 vapor species using the transpiration technique. J Nucl Mater 289:243–246

    Article  Google Scholar 

  23. Ali (Basu) M, Mishra R, Bharadwaj SR, Kerkar AS, Dharwadkar SR, Das D (2001) Thermodynamic stability of SrThO3. J Nucl Mater 299:165–170

    Article  Google Scholar 

  24. Prasad R, Dash S, Parida SC, Singh Z, Venugopal V (2003) Thermodynamic studies on SrThO3(s). J Nucl Mater 312:1–9

    Article  Google Scholar 

  25. Zharkova LA, Barancheeva NG (1964). In: Dash S, Singh Z, Prasad R, Sood DD (1993) (eds) The standard molar Gibbs free energy of formation of BaMoO3(s). J Nucl Mater 207:350–352

    Google Scholar 

  26. Agarwal R, Singh Z, Venugopal V (1999) Calorimetric investigations of SrMoO3 and BaMoO3 compounds. J Alloys Compd 282:231–235

    Article  Google Scholar 

  27. Shirsat AN, Kaimal KNG, Bharadwaj SR, Das D (2004) Thermodynamic stability of SrCeO3. J Solid State Chem 177:2007–2013

    Article  Google Scholar 

  28. Goudiakas J, Haire RG, Fuger J (1990) Thermodynamics of lanthanide and actinide perovskite type oxides IV. Molar enthalpies of formation of MM’O3 (M = Ba or Sr, M’ = Ce, Tb, Am). J Chem Thermodyn 22:577–587

    Article  Google Scholar 

  29. Cordfunke EHP, Booij AS, Huntelaar ME (1998) Thermochemical properties of BaCeO3(s) and SrCeO3(s) from T = (5 to 1500 K). J Chem Thermodyn 30:437–447

    Article  Google Scholar 

  30. Fava J, Flem GL, Devalette M, Rabardel L, Coutures JP, Foex M, Hagenmuller P (1971) Mise au Point D’un four de Haute Température –Application a L’étude des systems ThO2–SrO et ThO2–BaO. Rev Int Hautes Temper Et Refract 8:305–310

    Google Scholar 

  31. McIvar EJ (1966) Unit cell size of solid solutions of uranium dioxide and fission product oxides. Report AERE-M-1612

    Google Scholar 

  32. O’Hare PAG, Boerio J, Hoekstra HR (1976) Thermochemistry of uranium compounds VIII. Standard enthalpies of formation at 298.15 of the uranates of calcium (CaUO4) and barium (BaUO4). Thermodynamics of the behavior of barium in nuclear fuels. J Chem Thermodyn 8:845–855

    Article  Google Scholar 

  33. Subsri R, Mallika C, Mathews T, Sastry VS, Sreedharan OM (2003) Solubility studies, thermodynamics and electrical conductivity in Th1−x Sr x O2 system. J Nucl Mater 312:249–256

    Article  Google Scholar 

  34. C. Keller (1976) Ternary and polynary oxides of thorium. Gmelin Handbuch der Anorganischen Chemie, Thorium, Teil C2. Springer, Berlin

    Google Scholar 

  35. Kleykamp H (1985) The chemical state of the fission products in oxide fuels. J Nucl Mater 131:221–246

    Article  Google Scholar 

  36. Desai KH, Grimes RW, Parfitt D, Wiss T, Uffelen PV (2009) Atomic-scale simulation of soluble fission products in UO2. EUR Report ISSN 1018-5593, JRC EUR 23821 EN

    Google Scholar 

  37. Yokokawa H, Sakai N, Kawada T, Dokiya M (1991) Thermodynamic stability of perovskite and related compounds in some alkaline earth–transition metal-oxygen systems. J Solid State Chem 94:106–120

    Article  Google Scholar 

  38. Ali (Basu) M, Mishra R, Kerkar AS, Bharadwaj SR, Das D, Dharwadkar SR (2000) Vaporization behavior and Gibbs energy of formation of Cs2ThO3. J Nucl Mater 282:261–263

    Article  Google Scholar 

  39. Ali (Basu) M, Mishra R, Bharadwaj SR, Kerkar AS, Kaimal KNG, Das D (2001) Thermodynamic stability of Cs2ZrO3 by Knudsen effusion technique. J Alloys Comp 314:96–99

    Article  Google Scholar 

  40. Ali (Basu) M, Shirsat AN, Kumar SC, Bharadwaj SR, Das D (2003) Vaporization behavior and Gibbs energy of formation of Rb2ThO3. J Nucl Mater 323:68–71

    Article  Google Scholar 

  41. Barin I (1995) Thermochemical data of pure substance, 3rd edn. VCH, Weinheim

    Book  Google Scholar 

  42. Berman R M (1976) Fission product distribution in oxide fuels.WAPD-TM-1236

    Google Scholar 

  43. Kleykamp H, Paschoal JOA, Pejsa R, Thümmler F (1985) Composition and structure of fission product precipitates in irradiated oxide fuels: Correlation with phase studies in the Mo–Ru–Rh–Pd and BaO–UO2–ZrO2–MoO2 systems. J Nucl Mater 130:426–433

    Article  Google Scholar 

  44. Cordfunke EHP, Booij AS, Smit-Groen V, van Vlaanderen P (1997) Structural and thermodynamic characterization of the perovskite—related Ba1 + yUO3 + x and (Ba, Sr)1 + yUO3 + x phases. J Solid State Chem 131:341–349

    Article  Google Scholar 

  45. Nakajima K, Arai Y, Suzuki Y, Yamawaki M (1997) Vaporization behavior of SrPuO3. J Nucl Mater 248:233–237

    Article  Google Scholar 

  46. Dash S, Singh Z, Parida SC, Venugopal V (2005) Thermodynamic studies on Rb2ThO3(s). J Alloys Comp 398:219–227

    Article  Google Scholar 

  47. Cordfunke EHP, Ouweltjes W, Van Vlaanderen P (1987) The standard molar enthalpy of formation of Cs2ZrO3. J Chem Thermodyn 19:1117–1120

    Article  Google Scholar 

  48. Lamoreaux RH, Hildenbrand DL (1984) High temperature vaporization behavior of oxides I. Alkali metal binary oxides. J Phys Chem Ref Data 13:151–173

    Article  Google Scholar 

  49. Hoppe R, Seeger K (1970) Zur Kenntnis des Rb2PbO3 Typs: Über Rb2ZrO3, Rb2SnO3, Rb2TbO3. Z Anorg Allg Chem 375:264–269

    Article  Google Scholar 

  50. Dash S, Sood DD, Prasad R (1996) Phase diagram and thermodynamic calculations of alkali and alkaline earth metal zirconates. J Nucl Mater 228:83–116

    Article  Google Scholar 

  51. Villars P, Cenzual K; Gladyshevskii R, Shcherban O, Dubenskyy V, Kuprysyuk V, Savysyuk I (2010) Landolt-Börnstein—group III condensed matter, vol 43A8, p 519. Springer, Berlin. doi: 10.1007/978-3-540-70892-6_303, ISBN: 978-3-540-70891-9

  52. Cordfunke EHP, Ouweltjes W, Prins G (1988) Standard enthalpies of formation of tellurium compounds III. Cs2TeO3, Cs2Te2O5, Cs2Te4O9, and Cs2TeO4. J Chem Thermodyn 20:569–573

    Article  Google Scholar 

  53. Lindemer TB, Besmann TM, Johnson C E(1981) Thermodynamic review and calculations-alkali metal oxide systems with nuclear fuels, fission products and structural materials. J Nucl Mater 100:178–226

    Google Scholar 

  54. Shukla NK, Prasad R, Sood DD (1993) The standard molar enthalpies of formation at the temperature T = 298.15 K of barium molybdate BaMoO4(cr) and strontium molybdate SrMoO4(cr). J Chem Thermodyn 25:429–434

    Article  Google Scholar 

  55. Feber RC(1977) Gas impurities in the primary coolant of high-temperature gas-cooled reactors. Los Alamos Sci Lab Report, LA-Nureg-6635

    Google Scholar 

  56. Tangri RP, Venugopal V, Bose DK, Sunderesan M (1989) Thermodynamics of vaporization of cesium molybdate. J Nucl Mater 167:127–130

    Article  Google Scholar 

  57. Johnson I (1975) Mass spectrometric study of vaporization of cesium and sodium molybdates. J Phys Chem 79:722–726

    Article  Google Scholar 

  58. Yamawaki M, Oka T, Yasumoto M, Sakurai H (1993) Thermodynamics of vaporization of cesium molybdate by mass spectrometry. J Nucl Mater 201:257–260

    Article  Google Scholar 

  59. Semenov GA, Fokina LA, Mouldagalieva RA (1994) Mass spectrometric study of vaporization of cesium tellurate and tellurite. J Nucl Mater 210:167–171

    Article  Google Scholar 

  60. Prussin SG, Olander DR, Lau WK, Hansson L (1988) Release of fission products (Xe, I, Te, Cs, Mo Tc) from polycrystalline UO2. J Nucl Mater 154:25–37

    Article  Google Scholar 

  61. Konashi K, Yamawaki M (1997) Evaluation of iodine pressure in oxide fuel pins under irradiation. J Nucl Sci Technol 29:1–10

    Article  Google Scholar 

  62. Götzmann O (1983) A thermodynamic assessment of in-reactor iodine SCC of Zircaloy: Remarks concerning the article by D.R. Olander(1982) J Nucl Mater 110: 343–345, J Nucl Mater 118:349–351

    Google Scholar 

  63. Konashi K, Siokawa Y, Kayano H, Yamawaki M (1997) Radiation effect on the state of fission product iodine. J Nucl Mater 248:220–225

    Article  Google Scholar 

  64. Chattopadhyay G, Juneja JM (1993) A thermodynamic database for tellurium-bearing systems relevant to nuclear technology. J Nucl Mater 202:10–28

    Article  Google Scholar 

  65. Mishra R, Ali M, Bharadwaj SR, Das D (2003) Gibbs energy of formation of the Rh–Te intermetallic compounds Rh3Te2 and RhTe0.9. J Nucl Mater 321:318–323. doi:10.1016/S0022-3115(03)00301-5

    Article  Google Scholar 

  66. Ali (Basu) M, Shirsat AN, Mishra R, Kerkar AS, Kumar SC, Das D (2003) Thermodynamic stability of RuTe2 solid by vapor pressure study. J Alloys Comp 352:140–142

    Article  Google Scholar 

  67. Stolyarova TA, Osadchii EG (2011) Enthalpies of formation of tellurides of palladies from elements. Vestnik Otdelenia nauk o Zemle RAN 3: NZ6091, doi:10.2205/2011NZ000221

  68. Johnson I, Johnson CE, Crouthamel CE, Seils CA (1973) Oxygen potential of irradiated urania–plutonia fuel pins. J Nucl Mater 48:21–34

    Article  Google Scholar 

  69. Croff AG (1983) ORIGEN-2: Versatile computer code for calculating the nuclide composition and characteristics of nuclear materials. Nucl Technol 62:335–352

    Google Scholar 

  70. Bramman JI, Sharpe RM, Thom D, Yates G (1968) Metallic fission product inclusions in irradiated oxide fuels. J Nucl Mater 25:201–215

    Article  Google Scholar 

  71. Kleykamp H (1979) The chemical state of LWR high-power rods under irradiation. J Nucl Mater 84:109–117

    Article  Google Scholar 

  72. Kleykamp H (1989) Constitution and thermodynamics of Mo–Ru, Mo–Pd, Ru–Pd and Mo–Ru–Pd systems. J Nucl Mater 167:49–63

    Article  Google Scholar 

  73. Octavio J, Paschoal A, Kleykamp H, Theummler F (1983) Phase equilibria in the quaternary Mo–Ru–Rh–Pd system. Z Metallk 74:652–664

    Google Scholar 

  74. Fukuzawa T, Tanaka M, Tanabe T, Imoto S (1984) Technology Report. Osaka University vol 34, p 219

    Google Scholar 

  75. Yamawaki M, Nagai Y, Kogai T, Kanno M (1980) Thermodyn Nucl Mater 1(IAEA, Vienna, 1980):249

    Google Scholar 

  76. Naito K, Tsuji T, Matsui T, Date A (1988) Chemical states, phases and vapor pressures of fission produced noble metals in the oxide fuels. J Nucl Mater 154:3–13

    Article  Google Scholar 

  77. Matsui T, Naito K (1989) Vaporization studies on fission produced noble metal alloys by mass-spectrometric method. Thermochim Acta 139:299–312

    Article  Google Scholar 

  78. Kaufman L, Bernstein H (1970) Computer calculation of phase diagrams. Academic Press, New York

    Google Scholar 

  79. Edwards HS, Rosenberg AF, Bittel JT (1963) Thorium oxide-diffusion of oxygen, compatibility with borides, and feasibility of coating borides by pyrohydrolysis of metal halides. ASD-TDR-63-635

    Google Scholar 

  80. Bayogln AS, Lorenzelli R (1984) Oxygen diffusion in FCC fluorite type nonstoichiometric nuclear oxides MO2±x. Solid State Ionics 12:53–66

    Article  Google Scholar 

  81. Matsui T, Naito K (1985) Chemical diffusion coefficient of oxygen in thoria-urania mixed oxide. J Nucl Mater 135:149–154

    Article  Google Scholar 

  82. Mishra R, Shirsat AN, Das D(2006) Chemical diffusion of oxygen in thoria-urania solid solution. Proc Int Symp Mater Chem ISMC-06, 147–149

    Google Scholar 

  83. Sari C, Schumacher G (1976) Oxygen redistribution in fast reactor oxide fuel. J Nucl Mater 61:192–202

    Article  Google Scholar 

  84. Carslaw HS, Jaeger JC (1947) Conduction of heat in solids. Clarendon, Oxford

    MATH  Google Scholar 

  85. Gulbransen EA, Andrew KF, Brassart FA (1963) Oxidation of molybdenum between 550° to 1700°C. J Electrochem Soc 110:952–959

    Article  Google Scholar 

  86. Giacchetti G, Sari C (1976) Behavior of Mo in mixed oxide fuel. Nucl Technol 31:62–69

    Google Scholar 

  87. Barlett RW (1965) Molybdenum oxidation kinetics at high temperature. J Electrochem Soc 112:744–746

    Article  Google Scholar 

  88. Wilson CN (1979) Oxygen transport limitation in using getters to control fuel/cladding chemical interaction. Thermodyn Nucl Mater IAEA Vienna 1980, 1:427–438

    Google Scholar 

  89. Goldberg I et al (1977) Fission gas release from ThO2 and ThO2–UO2 fuels. Trans Am Nucl Soc 27:308–310

    Google Scholar 

  90. Paschoal JOA, Kleykamp H, Thümmler F (1987) Phase equilibria in pseudoquaternary BaO–UO2–ZrO2–MoO2 system. J Nucl Mater 151:10–21

    Article  Google Scholar 

  91. Ryu KH, Haile SM (1999) Chemical stability and proton conductivity of doped BaCeO3- BaZrO3 solid solutions. Solid State Ionics 125:355–367

    Article  Google Scholar 

  92. Lutique S, Jaborsky P, Koenings RJM, Krupa JC, van Genderen ACG, van Miltenburg JC, Wastin M (2003) Low temperature heat capacity of Nd2Zr2O7 pyrochlore. J Chem Thermodyn 35:955–965

    Article  Google Scholar 

  93. Knacke O, Kubaschewski O, Hesselmann K (1991) Thermochemical properties of inorganic substances, 2nd edn. Springer, Berlin

    Google Scholar 

  94. Sedmidubsky D, Benes O, Konings RJM (2005) High temperature heat capacity of Nd2Zr2O7 and La2Zr2O7 pyrochlores. J Chem Thermodyn 37:1098–1103

    Article  Google Scholar 

  95. Ali(Basu) M, Bharadwaj SR, Das D (2005) The standard molar enthalpy of formation of CdMoO4. J Nucl Mater 336:110–112

    Article  Google Scholar 

  96. Mishra R, Bharadwaj SR, Das D (2006) Determination of thermodynamic stability of CdMoO4 by knudsen effusion vapor pressure measurement method. J Therm Anal Cal 86:547–552

    Article  Google Scholar 

  97. Ali M, Bharadwaj SR, Mishra R, Kerkar AS, Das D (2000) The standard molar enthalpy of formation of ThMo2O8. Thermochim Acta 346:29–32

    Article  Google Scholar 

  98. Basu M, Mishra R, Bharadwaj SR, Kerkar AS, Dharawadkar SR (1998) Gibbs energy of formation of thorium molybdate (ThMo2O8) by the transpiration technique. J Nucl Mater 257:185–188

    Article  Google Scholar 

  99. Tripathi SN, Chattopadhyay G, Kerkar AS, Chandrasekharaiah MS (1985) Thermodynamic stability of UMoO6 by the transpiration method. J Am Ceram Soc 68:232–235

    Article  Google Scholar 

  100. Ali(Basu) M, Bharadwaj SR, Kumar SC, Das D (2005) Standard enthalpy of formation of La2Te3O9 and La2Te4O11. J Nucl Mater 347:69–72

    Article  Google Scholar 

  101. Ali(Basu) M, Mishra R, Kerkar AS, Bharadwaj SR, Das D (2002) Gibbs energy of formation of solid Ni3TeO6 from transpiration studies. J Nucl Mater 301:183–186

    Article  Google Scholar 

  102. Basu M, Mishra R, Bharadwaj SR, Namboodiri PN, Tripathi SN, Kerkar AS, Dharwadkar SR (1999) The standard molar enthalpies of formation of UTeO5 and UTe3O9. J Chem Thermodyn 31:1259–1263

    Article  Google Scholar 

  103. Mishra R, Namboodiri PN, Tripathi SN, Bharadwaj SR, Dharwadkar SR (1998) Vaporization behaviour and Gibbs’ energy of formation of UTeO5 and UTe3O9 by transpiration. J Nucl Mater 256:139–144

    Article  Google Scholar 

  104. Krishnan A, Ramarao GA, Mudher KDS, Venugopal V (1998) Thermal stability and vapour pressure studies on UTe3O9(s) and UTeO5(s). J Nucl Mater 254:49–54

    Article  Google Scholar 

  105. Wirth BD, Olander DR (2005) Section 9: Fission product behaviour. Nuclear Engineering Department, University of California, Berkeley: NE120

    Google Scholar 

  106. Inoue T, Hj Matzke (1981) Temperature dependence of Hertzian indentation fracture surface energy of ThO2. J Am Ceram Soc 64:355–360

    Article  Google Scholar 

  107. Hall ROA, Mortimer NJ, Mortimer DA (1987) Surface energy measurements on UO2—a critical review. J Nucl Mater 148:237–256

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Bharadwaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Bharadwaj, S.R., Mishra, R., Basu, M., Das, D. (2013). Thermochemistry of Thoria-based Fuel and Fission Products Interactions. In: Das, D., Bharadwaj, S. (eds) Thoria-based Nuclear Fuels. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5589-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5589-8_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5588-1

  • Online ISBN: 978-1-4471-5589-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics