Skip to main content

Glyph-Based Multi-field Visualization

  • Chapter
  • First Online:
Scientific Visualization

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

In this chapter, we present a state of the art on glyph-based visualization techniques that address the complex challenges of multi-field visualization. Glyphs are discrete parametrized visualization objects that encode multiple data values based on appearance (i.e., visual channels) such as size, shape, color, and opacity, and are effective for conveying multiple fields of data simultaneously. We provide a categorization of these techniques with the aim for an informative overview of recent literature. Our categorization is based on visual channels utilized by the glyph for mapping each data attribute, and the spatial dimensionality of the glyph-based visualization. We also discuss critical design aspects of glyph-based visualization to deal with the perceptual challenges inherent with this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A billboard is a planar structure placed in a 3D scene, which automatically adjusts its orientation such that it always faces the observer.

References

  1. Barr, A.H.: Superquadrics and angle-preserving transformations. IEEE Comput. Graph. Appl. 1(1), 11–23 (1981)

    Article  Google Scholar 

  2. Chlan, E.B., Rheingans, P.: Multivariate glyphs for multi-object clusters. In: INFOVIS, p. 19 (2005)

    Google Scholar 

  3. Crawfis, R., Allison, M.J.: A scientific visualization synthesizer. In: Proceedings of the IEEE visualization, pp. 262–267 (1991)

    Google Scholar 

  4. Hauser, H., Schumann, H.: Visualization pipeline. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of database systems, pp. 3414–3416. Springer, Berlin (2009)

    Google Scholar 

  5. Healey, C., Booth, K., Enns, J.: High-speed visual estimation using preattentive processing. ACM Trans. Comput.-Human Interact. 3, 107–135 (1996)

    Article  Google Scholar 

  6. Healey, C.G., Enns, J.T.: Large datasets at a glance: combining textures and colors in scientific visualization. IEEE Trans. Vis. Comput. Graph. 5(2), 145–167 (1999)

    Article  Google Scholar 

  7. Jankun-Kelly, T., Mehta, K.: Superellipsoid-based, real symmetric traceless tensor glyphs motivated by nematic liquid crystal alignment visualization. IEEE Trans. Vis. Comput. Graph. 12(5), 1197–1204 (2006)

    Article  Google Scholar 

  8. Kehrer, J., Muigg, P., Doleisch, H., Hauser, H.: Interactive visual analysis of heterogeneous scientific data across an interface. IEEE Trans. Vis. Comput. Graph. 17(7), 934–946 (2011)

    Article  Google Scholar 

  9. Kindlmann, G.: Superquadric tensor glyphs. In: Deussen, O., Hansen, C., Keim, D., Saupe, D. (eds.) Joint Eurographics—IEEE TCVG symposium on visualization, Konstanz, Germany, pp. 147–154 (2004)

    Google Scholar 

  10. Kindlmann, G., Westin, C.F.: Diffusion tensor visualization with glyph packing. IEEE Trans. Vis. Comput. Graph. 12(5), 1329–1336 (2006)

    Article  Google Scholar 

  11. Kirby, R.M., Marmanis, H., Laidlaw, D.H.: Visualizing multivalued data from 2D incompressible flows using concepts from painting. In: Proceedings of the IEEE visualization, pp. 333–340 (1999)

    Google Scholar 

  12. Kraus, M., Ertl, T.: Interactive data exploration with customized glyphs. In: WSCG (Posters), pp. 20–23 (2001)

    Google Scholar 

  13. de Leeuw, W.C., van Wijk, J.J.: A probe for local flow field visualization. In: Proceedings of the IEEE visualization conference (Vis’93), pp. 39–45 (1993)

    Google Scholar 

  14. Lie, A.E., Kehrer, J., Hauser, H.: Critical design and realization aspects of glyph-based 3D data visualization. In: Proceedings of the spring conference on computer graphics (SCCG 2009), pp. 27–34 (2009)

    Google Scholar 

  15. Meyer-Spradow, J., Stegger, L., Döring, C., Ropinski, T., Hinrichs, K.: Glyph-based SPECT visualization for the diagnosis of coronary artery disease. IEEE Trans. Vis. Comput. Graph. 14(6), 1499–1506 (2008)

    Article  Google Scholar 

  16. Peng, Z., Grundy, E., Laramee, R., Chen, G., Croft, N.: Mesh-driven vector field clustering and visualization: an image-based approach. IEEE Trans. Vis. Comput. Graph. (TVCG), 283–298 (2011)

    Google Scholar 

  17. Pickett, R.M., Grinstein, G.G.: Iconographic displays for visualizing multidimensional data. In: IEEE International Conference on Systems, Man, and Cybernetics, vol. 1, pp. 514–519 (1988)

    Google Scholar 

  18. Piringer, H., Kosara, R., Hauser, H.: Interactive focus+context visualization with linked 2D/3D scatterplots. In: Proceedings on coordinated and multiple views in exploratory visualization (CMV 2004), pp. 49–60 (2004)

    Google Scholar 

  19. Ropinski, T., Preim, B.: Taxonomy and usage guidelines for glyph-based medical visualization. In: Proceedings on simulation and visualization, pp. 121–138 (2008)

    Google Scholar 

  20. Sanyal, J., Zhang, S., Dyer, J., Mercer, A., Amburn, P., Moorhead, R.: Noodles: a tool for visualization of numerical weather model ensemble uncertainty. IEEE Trans. Vis. Comput. Graph. 16(6), 1421–1430 (2010)

    Article  Google Scholar 

  21. Shaw, C.D., Ebert, D.S., Kukla, J.M., Zwa, A., Soboroff, I., Roberts, D.A.: Data visualization using automatic, perceptually-motivated shapes. In: SPIE 3298, visual data exploration and analysis (1998)

    Google Scholar 

  22. Taylor, R.: Visualizing multiple fields on the same surface. IEEE Comput. Graph. Appl. 22(3), 6–10 (2002)

    Article  Google Scholar 

  23. Toutin, T.: Qualitative aspects of chromo-stereoscopy for depth-perception. Photogram. Eng. Remote Sens. 63(2), 193–203 (1997)

    Google Scholar 

  24. Ward, M.O.: A taxonomy of glyph placement strategies for multidimensional data visualization. Info. Vis. 1(3–4), 194–210 (2002)

    Article  Google Scholar 

  25. Wittenbrink, C.M., Pang, A., Lodha, S.K.: Glyphs for visualizing uncertainty in vector fields. IEEE Trans. Vis. Comput. Graph. 2(3), 266–279 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H.S. Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Chung, D.H., Laramee, R.S., Kehrer, J., Hauser, H. (2014). Glyph-Based Multi-field Visualization. In: Hansen, C., Chen, M., Johnson, C., Kaufman, A., Hagen, H. (eds) Scientific Visualization. Mathematics and Visualization. Springer, London. https://doi.org/10.1007/978-1-4471-6497-5_13

Download citation

Publish with us

Policies and ethics