Skip to main content

Protein Crystals: Molecular to Continuum Level Models Based on Crystal Plasticity Theory

  • Chapter
  • First Online:
Multiscale Modeling in Biomechanics and Mechanobiology
  • 2030 Accesses

Abstract

Biological materials are extremely well organized in a hierarchical structure from the molecular building blocks at their first level of organization up to the tissue and organ levels with fascinating nonuniform (anisotropic) properties. Nature utilizes hierarchical structures in an intriguing way to self-assemble biomaterials based on molecular building blocks such as amino acids, nucleic acids, polysaccharides, and lipids that are organized into efficient multifunctional structures and systems ranging from the nanoscopic to the macroscopic length scales [1, 2]. The most basic properties and functions of the biomaterials are defined at the very first level of organization. Therefore, it is imperative to incorporate information from the finer scale biological processes, which often govern processes at the coarser scale, to measure the properties and analyze the functions of biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular Biology of the Cell. New York, Taylor & Francis.

    Google Scholar 

  2. Fratzl, P., & Weinkamer, R. (2007). Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334.

    Google Scholar 

  3. Gupta, H.S., et al. (2006). Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc. Natl Acad. Sci. USA 103, 17741–17746.

    Google Scholar 

  4. Gupta, H.S., et al. (2007). Evidence for an elementary process in bone plasticity with an activation enthalpy of 1 eV. J. R. Soc. Interf. 4, 277–282.

    Google Scholar 

  5. Buehler, M.J. (2006). Nature designs tough collagen: Explaining the nanostructure of collagen fibrils. Proc. Natl Acad. Sci. USA 103, 12285–12290.

    Google Scholar 

  6. Chan, Hue, & SunDill, K.A. (1993). The protein folding problem. Phys. Today 46( 2), 24.

    Google Scholar 

  7. Chiti, F., & Dobson, C.M. (2006). Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366.

    Google Scholar 

  8. Mesquida, P., Riener, C.K., MacPhee, C.E., & McKendry, R.A. (2007). Morphology and mechanical stability of amyloid-like peptide fibrils. J. Mater. Sci. Mater. Med. 18, 1325–1331.

    Google Scholar 

  9. Iconomidou, V.A., & Hamodrakas, S.J. (2008). Natural protective amyloids. Curr. Protein Pept. Sci. 9, 291–309.

    Google Scholar 

  10. Hardy, J., & Selkoe, D.J. (2002). Medicine: The amyloid hypothesis of Alzheimer’sdisease. Progress and problems on the road to therapeutics. Science 297, 353–356.

    Google Scholar 

  11. Selkoe, D.J. (2001). Alzheimer’s disease: Genes, proteins, and therapy. Physiol. Rev. 81, 741–766.

    Google Scholar 

  12. Tachibana, M., Kobayashi, Y., Shimazu, T., Ataka, M., & Kojima, K. (1999). Growth and mechanical properties of lysozyme crystals. J. Crystal Growth 198, 661–664.

    Google Scholar 

  13. Niemela, P.S., Ollila, S., Hyvonen, M.T., Karttunen, M., & Vattulainen, I. (2007). PLoSComput. Biol. 3, 0304.

    Google Scholar 

  14. Snow, C.D., Sorin, E.J., Rhee, Y.M., & Pande, V.S. (2005). How well can simulation predict protein folding kinetics and thermodynamics? Annu. Rev. Biophys. Biomol. Struct. 34, 43–69.

    Google Scholar 

  15. Cormier, J., Rickman, J. M., Delph, T.J. (2001). Stress calculation in atomistic simulations of perfect and imperfect solids. J. Appl. Phys. 89, 99.

    Google Scholar 

  16. Odegard, G.M., Gates, T.S., Nicholson, L.M., & Wise, K.E. (2002). Equivalent- continuum modeling of nano-structured materials. Comp. Sci. Technol. 6214, 1869–1880.

    Google Scholar 

  17. Zamiri, A., & De, S. (2009). Modeling the mechanical response of tetragonal lysozyme crystals. Langmuir  26(6), 4251–4257.

    Google Scholar 

  18. Harata, K., Muraki, M., & Jigami, Y. (1993). Role of Arg115 in the catalytic action of human lysozyme: X-ray structure of His115 and Glu115 mutants. J. Mol. Biol. 233(3), 524–535.

    Google Scholar 

  19. Tait, S., White, E.T., & Litster, J.D. (2008). Mechanical characterization of protein crystals. Part. Part. Syst. Character. 25(3), 266–276.

    Google Scholar 

  20. Koizumi, H., Tachibana, M., Kawamoto, H., & Kojima\(\dagger \), K. (2004). Temperature dependence of microhardness of tetragonal hen-egg-white lysozyme single crystals. Philos. Mag.  84(28), 2961–2968.

    Google Scholar 

  21. Koizumi, H., Tachibana, M., & Kojima, K. (2006). Observation of all the components of elastic constants using tetragonal hen egg-white lysozyme crystals dehydrated at 42% relative humidity. Phys. Rev. E 73(4), 041910.

    Google Scholar 

  22. Koizumi, H., Kawamoto, H., Tachibana, M., & Kojima, K. (2008). Effect of intracrystalline water on micro-Vickers hardness in tetragonal hen egg-white lysozyme single crystals. J. Phys. D: Appl. Phys. 41(7), 074019.

    Google Scholar 

  23. Koizumi, H., Tachibana, M., & Kojima, K. (2009). Elastic constants in tetragonal hen egg-white lysozyme crystals containing large amount of water. Phys. Rev. E 79(6), 061917.

    Google Scholar 

  24. Alvarado-Contreras, J., Polak, M.A., & Penlidis, A. (2007). Micromechanical approach to modeling damage in crystalline polyethylene. Poly. Eng. Sci.  47(4), 410–420.

    Google Scholar 

  25. Tachibana, M., Koizumi, H., & Kojima, K. (2004). Effect of intracrystalline water on longitudinal sound velocity in tetragonal hen-egg-white lysozyme crystals. Phys. Rev. E 69(5), 051921.

    Google Scholar 

  26. Granato, A.V., Lucke, K., Schlipf, J., & Teutonico, L.J. (1964). Entropy factors for thermally activated unpinning of dislocations. J. Appl. Phys. 35(9), 2732–2745.

    Google Scholar 

  27. Kocks, U.F., Argon, A.S., Ashby, M.F. (1975). Thermodynamics and Kinetics of Slip. In Chalmers, B., Christian, J.W., Massalski, T.B. (Eds.). Progress in Materials Science. New York, Pergamon.

    Google Scholar 

  28. Bunge, H.-J. (1982). Texture Analysis in Materials Science: Mathematical Methods. London, Butterworths.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvranu De .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

De, S., Zamiri, A.R. (2015). Protein Crystals: Molecular to Continuum Level Models Based on Crystal Plasticity Theory. In: De, S., Hwang, W., Kuhl, E. (eds) Multiscale Modeling in Biomechanics and Mechanobiology. Springer, London. https://doi.org/10.1007/978-1-4471-6599-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6599-6_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6598-9

  • Online ISBN: 978-1-4471-6599-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics