Skip to main content

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

  • 2160 Accesses

Abstract

In this chapter, some concepts which are extensions of sparse properties are outlined. First, it describes some works about low-rank matrix approximation which include \(\ell _2\)-norm Wiberg algorithm and \(\ell _1\)-norm Wiberg algorithm. Second, it outlines the graphical models in compressed sensing which include message passing algorithm and approximate message passing algorithm. Third, it describes collaborative representation-based classifiers which use the \(\ell _2\)-norm to replace the \(\ell _1\)-norm in sparse representation model and the collaborative representation-based classifier (CRC). Lastly, it also describes some knowledge about high-dimensional nonlinear learning which includes kernel sparse representation, anchor points approaches, and sparse manifold learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buchanan, A.M., Fitzgibbon, A.W.: Damped newton algorithms for matrix factorization with missing data. In: IEEE CVPR (2005)

    Google Scholar 

  2. Chen, C.F., Wei, C.P., Wang, Y.C.: Low-rank matrix recovery with structural incoherence for robust face recognition. In: IEEE CVPR (2012)

    Google Scholar 

  3. Cheng, H., Liu, Z., Yang, L., Chen, X.: Sparse representation and learning in visual recognition: Theory and applications. Signal. Process. 93(6), 1408–1425 (2013)

    Article  Google Scholar 

  4. Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  5. Elhamifar, E., Vidal, R.: Sparse manifold clustering and embedding. In: NIPS (2011)

    Google Scholar 

  6. Eriksson, A., Van Den Hengel, A.: Efficient computation of robust low-rank matrix approximations in the presence of missing data using the l 1 norm. In: IEEE CVPR (2010)

    Google Scholar 

  7. Gao, S., Tsang, I.W.H., Chia, L.T.: Sparse representation with kernels. IEEE Trans. on Image Processing 22(2) (2013)

    Google Scholar 

  8. Ke, Q., Kanade, T.: Robust \(\ell _1\) norm factorization in the presence of outliers and missing data by alternative convex programming. In: IEEE CVPR (2005)

    Google Scholar 

  9. Maleki, M.A.: Approximate Message Passing Algorithms for Compressed Sensing. Stanford University (2010)

    Google Scholar 

  10. Montanari, A.: Graphical models concepts in compressed Sensing. Compressed sensing: Theory and Applications, pp. 394–438 (2012)

    Google Scholar 

  11. Okatani, T., Deguchi, K.: On the wiberg algorithm for matrix factorization in the presence of missing components. Int. J. Comput. Vis. 72(3), 329–337 (2007)

    Article  Google Scholar 

  12. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: A strategy employed by v1? Vis. Res. 37(23), 3311–3325 (1997)

    Article  Google Scholar 

  13. Pei, D., Sun, F., Liu, H.: Low-rank matrix recovery for traffic sign recognition in image sequences. In: Foundations and Practical Applications of Cognitive Systems and Information Processing, pp. 857–865. Springer (2014)

    Google Scholar 

  14. Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. mach. Intell.34(11) (2012)

    Google Scholar 

  15. Rigamonti, R., Brown, M.A., Lepetit, V.: Are sparse representations really relevant for image classification? In: IEEE CVPR (2011)

    Google Scholar 

  16. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural. Comput. 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  17. Scholkopft, B., Mullert, K.R.: Fisher discriminant analysis with Kernels (1999)

    Google Scholar 

  18. Shi, Q., Eriksson, A., van den Hengel, A., Shen, C.: Is face recognition really a compressive sensing problem? In: IEEE CVPR (2011)

    Google Scholar 

  19. Silva, J., Marques, J.S., Lemos, J.M.: Selecting landmark points for sparse manifold learning. In: NIPS (2005)

    Google Scholar 

  20. Tax, D.M., Duin, R.P.: Support vector data description. Mach.Learn. 54(1), 45–66 (2004)

    Article  MATH  Google Scholar 

  21. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  22. Vapnik, V.: The Nature of Statistical Learning Theory. springer, New York (2000)

    Book  MATH  Google Scholar 

  23. Wiberg, T.: Computation of principal components when data are missing. In: Proceedings Second Symp. Computational statistics (1976)

    Google Scholar 

  24. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. on Pattern Anal. Mach. Intell. 31(2) (2009)

    Google Scholar 

  25. Yu, K., Zhang, T., Gong, Y.: Nonlinear learning using local coordinate coding. In: NIPS, vol. 9 (2009)

    Google Scholar 

  26. Zhang, C., Liu, J., Tian, Q., Xu, C., Lu, H., Ma, S.: Image classification by non-negative sparse coding, low-rank and sparse decomposition. In: IEEE CVPR (2011)

    Google Scholar 

  27. Zhang, D., Yang, M., Feng, X.: Sparse representation or collaborative representation: which helps face recognition? In: IEEE ICCV (2011)

    Google Scholar 

  28. Zhang, Y., Jiang, Z., Davis, L.S.: Learning structured low-rank representations for image classification. In: IEEE CVPR (2013)

    Google Scholar 

  29. Zhou, T., Tao, D., Wu, X.: Manifold elastic net: a unified framework for sparse dimension reduction. Data. Min. Knowl.Discov. 22(3), 340–371 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Cheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Cheng, H. (2015). Beyond Sparsity. In: Sparse Representation, Modeling and Learning in Visual Recognition. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-6714-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6714-3_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6713-6

  • Online ISBN: 978-1-4471-6714-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics