Skip to main content

Nondestructive Visualization Using Electromagnetic Waves for Real and Practical Sensing Technology for Robotics

  • Chapter
Integrated Imaging and Vision Techniques for Industrial Inspection

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

  • 2653 Accesses

Abstract

This section describes novel methods of electromagnetic wave nondestructive visualization (NDV) for assessing qualification and durability of concrete and wooden structures, which involves devices, systems, and image processing. As the first, the basic knowledge and principles on dielectric properties of materials, wave propagation in media involving plane waves in vacuum and in non-conducting and non-magnetic dielectric media were introduced. As the second, the dielectric properties of concrete and NDV techniques for concrete structures were introduced. After the introduction of conventional methods to detect internal cracks in concrete structures, a novel development of a millimeter wave scanner for NDV of concrete was introduced where the performance of the scanner to detect surface cracks covered by other sheet materials was discussed. Miscellaneous image processing techniques to recognize the target using pattern recognition methods were also introduced. Wood is a material made of the plant cells of trees. Wood shows anisotropy in physical and mechanical properties, such as elastic moduli, strength, and dielectric constants. In addition, wood is deteriorated by biological agents such as insects and fungi, and these deterioration often generate in inner or hidden areas of wood and wooden construction. The deterioration is closely associated with moisture content of wood. In this section, the feasibility of technologies using electromagnetic waves for the nondestructive evaluation of properties and deterioration of wood and wooden construction, is introduced. The reaction of wood to electromagnetic wave such as transmission and reflection of millimeter wave through and from wood was discussed. The development of wooden wall scanner for nondestructive diagnoses of wooden houses using FMCW radar was introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jackson JD (1962) Classical electrodynamics. Wiley, New York

    MATH  Google Scholar 

  2. Smythe WB (1989) Static and dynamic electricity, 3rd edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  3. Bell JR, Leonards GA, Dolch WA (1963) Determination of moisture content of hardened concrete by its dielectric properties. In: Proceedings of the American society for testing and material, vol 63

    Google Scholar 

  4. Irie H, Yoshida Y, Sakurada Y, Ito T (2008) Non-destructive-testing methods for concrete structures. In: NTT Tech Rev 6(5). https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr200805le3.pdf&mode=show_pdf

  5. Light ESPAR 2, AIREC Engineering Corporation. http://www.airec.co.jp/products/html/000056.html

  6. Taniguchi T, Kobayashi T (2003) An omnidirectional and low-VSWR antenna for the FCC-approved UWB frequency band. In: Proceedings of the 2003 IEEE AP-S international symposium, Columbus, USA, June 2003, pp 460–463

    Google Scholar 

  7. Kobayashi T, Takahashi N, Yoshikawa M, Tsunoda K, Tennno N (2007) Measurement of automobile UWB radar cross sections at Ka band. In: Sabath F, Mokole EL, Schenk U, Nittsch D (eds) Ultra-wideband short-pulse electromagnetics 7. Springer, New York, pp 586–592

    Chapter  Google Scholar 

  8. Taniguchi T, Maeda A, Kobayashi T (2007) An omnidirectional and low-VSWR ultra wideband antenna for a frequency band of 6 to 40 GHz. In: Braun CE, Stone AP, Tyo JS (eds) Ultra-wideband, short-pulse electromagnetics 8. Springer, New York, pp 41–48

    Google Scholar 

  9. Yang T, Davis WA (2004) Planar half-disk antenna structures for ultra-wideband communications. In: Proceedings of the 2004 IEEE AP-S international symposium, Monterey, USA, June 2004, pp 2508–2511

    Google Scholar 

  10. Hirota A, Iwasaki H (2005) Planar trapezoid dipole antenna with ultra wideband characteristics. In: Proceedings of the 2005 IEEE AP-S international symposium, Washington D.C., USA, July 2005, pp 540–543

    Google Scholar 

  11. H. Sato, K. Sawaya, N. Arai, Y. Wagatsuma, and K. Mizuno “Broadband FDTD analysis of Fermi antenna with narrow width substrate,” in Proceedings of the 2003 IEEE AP-S International Symposium, Columbus, USA, June 2003, pp. 261–264

    Google Scholar 

  12. Kim IK, Kidera N, Pinel S, Papapolymerou J, Laskar J, Yook J-G, Tentzeris MM (2006) Linear tapered cavity-backed slot antenna for millimeter-wave LTCC modules. IEEE Antennas Wirel Propag Lett 5:175–178

    Article  Google Scholar 

  13. Uehara K, Miyashita K, Natsume K, Hatakeyama K, Mizuno K (1992) Lens-coupled imaging arrays for the millimeter-and submillimete-wave regions. IEEE Trans Microw Theory Tech 40(5):806–811

    Article  Google Scholar 

  14. Mizuno K (2001) Millimeter wave imaging technologies (invited). In: Proceeding of the 2001 Asia-Pacific microwave conference, Taipei, December 2001, pp 394–398

    Google Scholar 

  15. Lee RQ, Simons RN (1997) Advances in microstrip and printed antennas, In: Lee HF, Chen W (ed) chapter 9, Wiley, New York

    Google Scholar 

  16. Sugawara S, Maita Y, Adachi K, Mori K, Mizuno K (1997) A mm-wave tapered slot antenna with improved radiation pattern. In: IEEE MTT-S international microwave symposium digest, Denver, USA, pp 959–962

    Google Scholar 

  17. Sugawara S, Maita Y, Adachi K, Mori K, Mizuno K (1998) Characteristics of a mm-wave tapered slot antenna with corrugated edges. In: IEEE MMT-S international microwave symposium digest, Baltimore, USA, pp 533–536

    Google Scholar 

  18. Takagi Y, Sato H, Wagatsuma Y, Sawaya K, Mizuno K (2004) Study of high gain and broadband antipodal fermi antenna with corrugation. International Symposium Antennas and Propagation, vol 1, Sendai, Japan, pp 69–72

    Google Scholar 

  19. Wang S, Chen XD, Parini CG (2007) Analysis of ultra wideband antipodal vivaldi antenna design. In: Proceedings of the 2007 Loughborough antennas and propagation conference, Loughborough, UK, April 2007, pp 129–132

    Google Scholar 

  20. Gu K, Wang G, Li J (2004) Migration based SAR imaging for ground penetrating radar systems. IEE Proc Radar Sonar and Navig 155:317–325

    Article  Google Scholar 

  21. CST STUDIO SUITE 2006B, Computer simulation technology GmbH http://www.cst.com

  22. Kaneko S, Oka S, Matsumiya N (2012) Detection of cracks in concrete structures from digital camera images. NTT Technical Review, vol 10, No. 2, 2012. https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201202fa3.html

  23. Oka S, Mochizuki S, Togo H, Kukutsu N (2009) Inspection of concrete structures using millimeter-wave imaging technology. NTT Tech Rev 7(3). https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr200903sf4.html

  24. Sheen DM, McMakin DL, Hall TE (2001) Three-dimensional millimeter-wave imaging for concealed weapon detection. IEEE Trans Microw Theory Tech 49(9):1581–1592

    Article  Google Scholar 

  25. Ravan M, Amineh RK, Nikolova NK (2010) Near-field microwave holographic imaging: target localization and resolution study. In: 2010 URSI international symposium on electromagnetic theory, Aug 2010, pp 396–399

    Google Scholar 

  26. Kak AC, Slaney M (2001) Principles of computerized tomographic imaging. Society of Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  27. Mochizuki S, Oka S, Togo H, Kukutsu N (2010) High-phase-resolution 77-GHz-band radar module for near-field millimeter-wave imaging. In: 2010 IEEE MTT-S international microwave symposium Digest, May 2010, pp 636–639

    Google Scholar 

  28. Guidelines for concrete crack inspection, maintenance and reinforcement (2013) Japan Concrete Institute (in Japanese), http://www.jci-net.or.jp/j/publish/book/guide_0080.html

  29. Yamaguchi T, Nakamura S, Hashimoto S (2008) An efficient crack detection method using percolation-based image processing. In: Proceeding of the industrial electronics and applications, ICIEA, in Singapore, pp 1875–1880

    Google Scholar 

  30. Oka S, Mochizuki S, Togo H, Kukutsu N (2009) A neural network algorithm for detecting invisible concrete surface cracks in near-field millimeter-wave images. In: Proceeding of the IEEE international conference on systems, man, and cybernetics, neural networks and their applications II, in Texas, pp 3901–3905

    Google Scholar 

  31. Ogami M (1987) Hand Book of Image Processing. Tokyo University Publication (in Japanese)

    Google Scholar 

  32. Fujita Y, Mitani Y, Hamamoto Y (2006) A method for crack detection on a concrete structure. In: Proceeding of IEEE 18th international conference on pattern recognition, Hong Kong, 20–24 Aug 2006

    Google Scholar 

  33. Serre T, Wolf L, Poggio T (2005) Object recognition with features inspired by visual cortex. In: Proceeding of IEEE computer society conference on computer vision and pattern recognition, San Diego, 20–25 Jun 2005

    Google Scholar 

  34. Yamaguchi T, Nakamura S, Hashimoto S (2008) An efficient crack detection method using percolation-based image processing. In: Proceeding of industrial electronics and applications, ICIEA, Singapore, pp 1875–1880

    Google Scholar 

  35. Markwardt LJ, Wilson TRC (1935) Strength and related properties of woods grown in the United States. In: Technical Bulletin 479, USDA Forest Products Laboratory 99 p

    Google Scholar 

  36. Lin T (1967) Review of the electrical properties of wood and cellulose. For Prod J 17(5):54–60

    Google Scholar 

  37. Uemura T (1960) Dielectrical properties of woods as the indicator of the moisture. Bull For For Prod Res Inst 119:95–167

    Google Scholar 

  38. Trapp W, Pungs L (1956) Einfluss von Temperatur und Feucht auf das Dielectrische Verhalten von Naturholz im grossen Frequenzbereich. Holzforschung 10(5):144–150

    Article  Google Scholar 

  39. Standard of wood processing using high frequency electricity (1960) Technical report of The Institute of Electrical Engineers of Japan, 38

    Google Scholar 

  40. Tanaka S, Fujiwara Y, Fujii Y, Okumura S, Togo H, Kukutsu N, Nagatsuma T (2011) Effect of grain direction on transmittance of 100-GHz millimeter wave for hinoki (Chamaecyparis Obtusa). J Wood Sci 57(3):189–194

    Article  Google Scholar 

  41. Tanaka S, Fujiwara Y, Fujii Y, Okumura S, Togo H, Kukutsu N, Mochizuki S (2013) Dielectric anisotropy of oven- and air-dried wood evaluated using a free space millimeter wave. Journal of Wood Science, Springer, doi:10.1007/s10086-013-1341-7, published April 2013

  42. Tanaka S, Fujiwara Y, Fujii Y, Okumura S, Togo H, Kukutsu N, Mochizuki S (2013) Effect of annual rings on transmission of 100 GHz millimeter waves through wood. Journal of Wood Science, Springer. doi: 10.1007/s10086-013-1342-6, published April 2013

  43. Fujii Y, Fujiwara Y, Tanaka S, Okumura S, Togo H, Mochizuki S, Kukutsu N (2010) Feasibility of millimeter wave imaging as tool for nondestructive inspection of wood and wooden structures. Proceedings of 35th international conference on infrared, millimeter and terahertz waves, Roma, September 2010. doi:10.1109/ICIMW.2010.5612351

  44. Fujiwara Y, Fujii Y, Tanaka S, Okumura S, Togo H, Mochizuki S, Kojima T, Kukutsu N (2012) Feasibility of imaging technology using micro- and millimeter wave for nondestructive inspection of wooden buildings. Proceedings of advanced electromagnetics symposium, AES 2012, proceedings, Paris, April 2012, pp 672–674

    Google Scholar 

  45. Fujii Y, Fujiwara Y, Yanase Y, Okumura S, Narahara K, Ngatsuma T, Yoshimura T, Imamura Y (2007) Nondestructive detection of termites using a millimeter-wave imaging technique. For Prod J 57(10):75–79

    Google Scholar 

  46. Fujii Y, Fujiwara Y, Yanase Y, Mori T, Yoshimura T, Nakajima M, Tsusumi H, Mori M, Kurisaki H (2013) Development of radar apparatus for scanning of wooden-wall to evaluate inner structure and bio-degradation non-destructively. Adv Mater Res 778:289–294

    Article  Google Scholar 

  47. Sawada Y, Matsumoto A, Fujii Y (2015) Pattern recognition of blue stain discoloration appeared on radiata pine boards. Mokuzai Gakkaishi 61(4):274–279

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyoshi Togo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London (outside the USA)

About this chapter

Cite this chapter

Togo, H., Oka, S., Fujii, Y., Fujiwara, Y. (2015). Nondestructive Visualization Using Electromagnetic Waves for Real and Practical Sensing Technology for Robotics. In: Liu, Z., Ukida, H., Ramuhalli, P., Niel, K. (eds) Integrated Imaging and Vision Techniques for Industrial Inspection. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-6741-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6741-9_14

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6740-2

  • Online ISBN: 978-1-4471-6741-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics