Skip to main content

Analog Signals Conditioning and Discretization

  • Chapter
  • First Online:
Digital Signal Processing in Power Electronics Control Circuits

Part of the book series: Power Systems ((POWSYS))

Abstract

Chapter 2 is devoted to problems of analog signal acquisition for the digital control circuits in power electronics devices. In this chapter the problems of the measurements in power electronics circuits are highlighted. Typical systems for current and voltage measurements are discussed. Particular attention is paid to galvanic isolation and the impact of a high slew rate in common mode voltage. A discussion is presented on the selection of the sample rate and number of bits. Consideration is given to the methods and circuit design to reduce quantization noise. Included is a discussion of noise shaping circuits useful for power electronics output circuits. Also included is a section on the impact of the phenomenon of jitter on the signal to noise ratio. In this chapter a method for calculating the resultant signal to noise ratio is also shown. Finally, at the end of this chapter a presentation of selected A/D converters suitable for use in power electronics circuits is made. Special attention is paid to simultaneously sampling A/D converters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ABB (2012) ESM1000 general informations. Technical report, ABB

    Google Scholar 

  2. Allegro (2005) Current sensor: ACS752SCA-100. Technical report, ACS752100-DS Rev. 6, Allegro MicroSystems Inc\(\text{.}\)

    Google Scholar 

  3. Allegro (2011) ACS756, fully integrated, hall effect-based linear current sensor IC with 3 kVRMS voltage isolation and a low-resistance current conductor. Data Sheet, Allegro MicroSystems Inc\(\text{. }\)

    Google Scholar 

  4. Analog Devices (1996) AD215 120 kHz bandwidth, low distortion, isolation amplifier, Analog Devices Inc\(\text{. }\)

    Google Scholar 

  5. Analog Devices (2012) AD8210, High voltage, bidirectional current shunt monitor, Analog Devices Inc\(\text{. }\)

    Google Scholar 

  6. Analog Devices (2012) AD7606/AD7606-6/AD7606-4 8-/6-/4-channel DAS with 16-bit, bipolar input, simultaneous sampling ADC. Data sheet, Analog Devices Inc\(\text{. }\)

    Google Scholar 

  7. Attia JO (1999) Electronics and circuit analysis using MATLAB. CRC Press, Boca Raton

    Book  Google Scholar 

  8. Avago (2008) HCPL-7800A/HCPL-7800 isolation amplifier. Technical report, AV02-1436EN, Avago Technologies

    Google Scholar 

  9. Avago (2011) HCPL-7860/HCPL-786J optically isolated sigma-delta (S-D) modulator. Technical report, AV02-0409EN, Avago Technologies

    Google Scholar 

  10. Avago (2013) Optoisolation products, application block diagrams. Reference Guide, AV00-0271EN, Avago Technologies

    Google Scholar 

  11. Avago (2014) Optocouplers. Designer’s guide, AV02-4387EN, Avago Technologies

    Google Scholar 

  12. Azeredo-Leme C (2011) Clock jitter effects on sampling: a tutorial. IEEE Circuits Syst Mag 3:26–37

    Article  Google Scholar 

  13. Baggini A (ed) (2008) Handbook of power quality. Wiley, New York

    Google Scholar 

  14. Baird RT, Fiez TS (1995) Linearity enhancement of multibit A/D and D/A converters using data weighted averaging. IEEE Trans Circuits Syst II Analog Digital Sig Process 42(12):753–762

    Article  Google Scholar 

  15. Bateman A, Paterson-Stephens I (2002) The DSP handbook: algorithms, applications and design techniques. Prentice Hall, New York

    Google Scholar 

  16. Baxandall PF (1959) Transistor sine-wave LC oscillators. In: ICTASD—IRE, pp 748–759

    Google Scholar 

  17. Bossche AV, Valchev VC (2005) Inductors and transformers for power electronics. CRC Press, Boca Raton

    Book  Google Scholar 

  18. Brannon B (2004) Sampled systems and the effects of clock phase noise and jitter. Application note AN-756. Technical report, Analog Devices Inc\(\text{. }\)

    Google Scholar 

  19. Brannon B, Barlow A (2006) Aperture uncertainty and ADC system performance. Application note AN-501. Technical report, Analog Devices Inc\(\text{. }\)

    Google Scholar 

  20. Bruun G (1978) Z-transform DFT filters and FFT’s. IEEE Trans Acoust Speech Signal Process 26(1):56–63

    Article  Google Scholar 

  21. Candy J, Temes G (eds) (1992) Oversampling delta-sigma data converters. Theory, design, and simulation. IEEE Press

    Google Scholar 

  22. Carley RL, Schreier R, Temes GC (1997) Delta-sigma ADCs with multibit internal converters. In: Norsworthy SR, Schreier R, Temes GC (eds) Delta-sigma data converters. Theory, design, and simulation. IEEE Press

    Google Scholar 

  23. Cataltepe T, Kramer AR, Larson LE, Temes GC, Walden RH (1992) Digitaly corrected multi-bit \(\Sigma \Delta \) data converters. In: Candy JC, Temes GC (eds) IEEE proceedings of oversampling delta-sigma data converters theory, design, and simulation, ISCAS’89, May 1989. IEEE Press

    Google Scholar 

  24. Chen WK (ed) (1995) The circuits and filters handbook. IEEE Press, Boca Raton

    MATH  Google Scholar 

  25. ChenYoung (2011) Closed loop precise Hall current sensor CYHCS-SH. Technical report, ChenYoung

    Google Scholar 

  26. Crochiere RE, Rabiner LR (1983) Multirate digital signal processing. Prentice Hall Inc., Englewood Cliffs

    Google Scholar 

  27. Cummings J, Doogue MC, Friedrich AP (2007) Recent trends in hall effect current sensing (Rev. 1). AN295045. Technical report, Allegro MicroSystems Inc\(\text{. }\)

    Google Scholar 

  28. Cutler C (1960) Transmission system employing quantization. US Patent 2927962

    Google Scholar 

  29. Dabrowski A (ed) (1997) Digital signal processing using digital signal processors. Wydawnictwo Politechniki Poznanskiej, Poznan (in polish)

    Google Scholar 

  30. Dabrowski A, Sozanski K (1998) Implementation of multirate modified wave digital filters using digital signal processors. In: XXI Krajowa Konferencja Teoria Obwodow i Uklady Elektroniczne, KKTUIE’98, Poznan

    Google Scholar 

  31. Data Translation (2008) The battle for data fidelity: understanding the SFDR spec. Technical report, Data Translation

    Google Scholar 

  32. Data Translation (2009) Benefits of simultaneous data acquisition modules. Technical report, Data Translation

    Google Scholar 

  33. Farhang-Boroujeny B, Lee Y, Ko C (1996) Sliding transforms for efficient implementation of transform domain adaptive filters. Signal Process 52(1):83–96

    Article  MATH  Google Scholar 

  34. Friis HT (1944) Noise figures of radio receivers. Proc IRE 32(7):419–422

    Article  Google Scholar 

  35. Galton I (1997) Spectral shaping of circuit errors in digital-to-analog converters. IEEE Trans Circuits Syst II Analog Digit Signal Process 44(10):789–797

    Article  Google Scholar 

  36. Goertzel G (1958) An algorithm for the evaluation of finite trigonometric series. Am Math Monthly 65:34–35

    Article  MathSciNet  Google Scholar 

  37. Goldberg JM, Sandler MB (1994) New high accuracy pulse width modulation based digital-to-analogue convertor/power amplifier. IEE Proc Circuits Devices Syst 141(4):315–324

    Article  Google Scholar 

  38. Gwee BH, Chang JS, Adrian V (2007) A micropower low-distortion digital class-d amplifier based on an algorithmic pulsewidth modulator. IEEE Trans Circuits Syst I Regul Pap 52(10):2007–2022

    Article  Google Scholar 

  39. Hartley RVL (1928) Transmission of information. Bell Syst Tech J 7:535–563

    Article  Google Scholar 

  40. Hartmann M, Biela J, Ertl H, Kolar JW (2009) Wideband current transducer for measuring ac signals with limited DC offset. IEEE Trans Power Electron 24(7):1776–1787

    Article  Google Scholar 

  41. Holmes DG, Lipo TA (2003) Pulse width modulation for power converters: principles and practice. Institute of Electrical and Electronics Engineers, Inc\(\text{. }\)

    Google Scholar 

  42. Honeywell (2008) Current sensors line guide. Technical report, Honeywell International Inc\(\text{. }\)

    Google Scholar 

  43. IEEE (2011) IEEE standard for terminology and test methods for analog-to-digital converters. IEEE Std. 1241-2010. Technical report, IEEE

    Google Scholar 

  44. Jacobsen E, Lyons R (2003) The sliding DFT. IEEE Signal Process Mag 20(2)

    Google Scholar 

  45. Jacobsen E, Lyons R (2004) An update to the sliding DFT. IEEE Signal Process Mag 21:110–111

    Article  Google Scholar 

  46. Kazimierkowski M, Malesani L (1998) Current control techniques for three-phase voltage-source converters: a survey. IEEE Trans Ind Electron 45(5):691–703

    Article  Google Scholar 

  47. Kazmierkowski MP, Kishnan R, Blaabjerg F (2002) Control in power electronics. Academic Press, San Diego

    Google Scholar 

  48. Kester W (2004) Analog-digital conversion. Analog Devices Inc., Norwood

    Google Scholar 

  49. Kester W (2005) The data conversion handbook. Newnes, New York

    Google Scholar 

  50. Kester W (2009) Understand SINAD, ENOB, SNR, THD, THD+N, and SFDR so you don’t get lost in the noise floor. Technical report, Analog Devices Inc\(\text{. }\)

    Google Scholar 

  51. Kotelnikov AV (1933) On the capacity of the ‘ether’ and of cables in electrical communication. In: Proceedings of the first All-Union Conference on the technological reconstruction of the communications sector and low-current engineering, Moscow

    Google Scholar 

  52. Kurosu A, Miyase S, Tomiyama S, Takebe T (2003) A technique to truncate IIR filter impulse response and its application to real-time implementation of linear-phase IIR filters. IEEE Trans Signal Process 51(5):1284–1292

    Article  MathSciNet  Google Scholar 

  53. Larson LE, Cataltepe T, Temes G (1992) Multibit oversampled—A/D converter with digital error correction. In: Candy JC, Temes GC (eds) Oversampling delta-sigma data converters. Theory, design, and simulation, IEEE Electronics Letters, 24 August 1988. IEEE Press

    Google Scholar 

  54. Leung BH, Sutarja S (1992) Multibit—A/D converter incorporating a novel class of dynamic element matching techniques. IEEE Trans Circuits Syst II Analog Digital Signal Process 39(1):35–51

    Article  Google Scholar 

  55. LEM (2004) Isolated current and voltage transducer, 3rd edn. LEM Components

    Google Scholar 

  56. LEM (2012) Current transducer LA 55-P. LEM Components

    Google Scholar 

  57. LEM (2012) Current transducer LA 205-S. Technical report, LEM Components

    Google Scholar 

  58. Lyons R (2004) Understanding digital signal processing, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  59. Lyons R, Bell A (2004) The Swiss army knife of digital networks. IEEE Signal Process Mag 21(3):90–100

    Article  Google Scholar 

  60. Mitra S (2006) Digital signal processing: a computer-based approach. McGraw-Hill, New York

    Google Scholar 

  61. Mohan N, Undeland TM, Robbins WP (1995) Power electronics, converters, applications and design. Wiley, New York

    Google Scholar 

  62. Mota M (2010) Understanding clock jitter effects on data converter performance and how to minimize them. Technical report, Synopsis Inc\(\text{. }\)

    Google Scholar 

  63. Norsworthy SR (1997) Quantization errors and dithering in modulators. In: Norsworthy SR, Schreier R, Temes GC (eds.) Delta-sigma data converters. Theory, design, and simulation. IEEE Press

    Google Scholar 

  64. Norsworthy SR, Schreier R, Temes GC (eds) (1997) Delta-sigma data converters, theory, design, and simulation, IEEE Press

    Google Scholar 

  65. Nyquist H (1924) Certain factors affecting telegraph speed. Bell Syst Tech J 3:324–346

    Article  Google Scholar 

  66. Nyquist H (1928) Certain topics in telegraph transmission theory. AIEE Trans 47:617–644

    Google Scholar 

  67. Oppenheim AV, Schafer RW (1999) Discrete-time signal processing. Prentice Hall, New Jersey

    MATH  Google Scholar 

  68. Orfanidis SJ (2010) Introduction to signal processing. Prentice Hall, Inc., Upper Saddle River

    Google Scholar 

  69. Oshana R (2005) DSP Software development techniques for embedded and real-time systems. Newnes, Boston

    Google Scholar 

  70. Owen M (2007) Practical signal processing. Cambridge University Press, Cambridge

    Google Scholar 

  71. Plassche R (2003) CMOS integrated analog-to-digital and digital-to-analog converters. Springer, New York

    Book  MATH  Google Scholar 

  72. Powell SR, Chau PM (1991) A technique for realizing linear phase IIR filters. IEEE Trans Signal Process 39(11):2425–2435

    Article  Google Scholar 

  73. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  74. Proakis JG, Manolakis DM (1996) Digital signal processing, principles, algorithms, and application. Prentice Hall Inc., Englewood Cliffs

    Google Scholar 

  75. Rabiner LR, Gold B (1975) Theory and application of digital signal processing. Prentice Hall Inc., Englewood Cliffs

    Google Scholar 

  76. Ray WF, Davis RM (1993) Wide bandwidth Rogowski current transducer: part 1—the Rogowski coil. EPE J 3(2):116–122

    Article  Google Scholar 

  77. Ray WF, Davis RM (1993) Wide bandwidth Rogowski current transducer: part 2—the integrator. EPE J 3(1):51–59

    Article  Google Scholar 

  78. Ray WF, Davis RM (1997) Developments in Rogowski current transducer. In: Conference proceedings, EPE, Trondheim, vol 3, pp 308–312

    Google Scholar 

  79. Redmayne D, Trelewicz E, Smith A (2006) Understanding the effect of clock jitter on high speed ADCs. Design Note 1013. Technical report, Linear Technology, Inc\(\text{. }\)

    Google Scholar 

  80. Rollier S (2012) High accuracy, high technology: the perfect choice! ITB 300-S/IT 400-S/IT 700-S current transducers. Technical report, LEM Components

    Google Scholar 

  81. Schreier R, Temes GC (2004) Understanding delta-sigma data converters. Wiley-IEEE Press, New York

    Book  Google Scholar 

  82. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27: 379–423 and 623–656

    Google Scholar 

  83. Silicon Laboratories (2015) Si8920ISO-EVB, Si8920ISO-EVB user’s guide, Silicon Laboratories

    Google Scholar 

  84. Silicon Laboratories (2016) Si8920 Isolated amplifier for current shunt measurement. Data Sheet, Silicon Laboratories

    Google Scholar 

  85. Sozański K (1999) Design and research of digital filters banks using digital signal processors. PhD thesis, Technical University of Poznan (in Polish)

    Google Scholar 

  86. Sozański K (2002) Implementation of modified wave digital filters using digital signal processors. In: Conference proceedings of 9th international conference on electronics, circuits and systems, pp 1015–1018

    Google Scholar 

  87. Sozański K (2012) Realization of a digital control algorithm. In: Benysek G, Pasko M (eds) Power theories for improved power quality. Springer, London, pp 117–168

    Google Scholar 

  88. Sozański K, Strzelecki R, Fedyczak Z (2001) Digital control circuit for class-D audio power amplifier. In: Conference proceedings of 2001 IEEE 32nd annual power electronics specialists conference, PESC’01, pp 1245–1250

    Google Scholar 

  89. Sozanski K (2015) Selected problems of digital signal processing in power electronic circuits. In: Conference proceedings, SENE’15, Lodz Poland

    Google Scholar 

  90. Sozanski K (2016) Signal-to-noise ratio in power electronic digital control circuits. In: Conference proceedings of signal processing, algorithms, architectures, arrangements and applications, SPA’16. Poznan University of Technology, pp 162–171

    Google Scholar 

  91. Spang H, Schulthessis P (1962) Reduction of quantizing noise by use of feedback. IRE Trans Commun Syst 10:373–380

    Article  Google Scholar 

  92. Strzelecki R, Fedyczak Z, Sozanski K, Rusinski J (2000) Active power filter EFA1. Technical Report, Instytut Elektrotechniki Przemyslowej, Politechnika Zielonogorska (in Polish)

    Google Scholar 

  93. Texas Instruments (2005) ISO124 precision lowest-cost isolation amplifier. Data sheet, Texas Instruments Inc\(\text{. }\)

    Google Scholar 

  94. Texas Instruments (2006) ADS8364 250kSPS, 16-bit, 6-channel simultaneous sampling analog-to-digital converter, Data sheet. Texas Instruments Inc\(\text{. }\)

    Google Scholar 

  95. Texas Instruments (2008) TMS320F28335/28334/28332, TMS320F28235/28234/28232, digital signal controllers (DSCs). Data Manual, Texas Instruments Inc\(\text{. }\)

    Google Scholar 

  96. Texas Instruments (2009) ISO120, ISO121 precision low cost isolation amplifier. Technical report, iso121.pdf, Texas Instruments, Inc\(\text{. }\)

    Google Scholar 

  97. Texas Instruments (2010) INA270, INA271 voltage output, unidirectional measurement current-shunt monitor. Data sheet, Texas Instruments Inc\(\text{. }\)

    Google Scholar 

  98. Texas Instruments (2010) C2000 teaching materials, tutorials and applications. SSQC019, Texas Instruments Inc\(\text{. }\)

    Google Scholar 

  99. Texas Instruments (2011) ADS1274, ADS1278, quad/octal, simultaneous sampling, 24-bit analog-to-digital converters. Data sheet, Texas Instruments Inc\(\text{. }\)

    Google Scholar 

  100. Texas Instruments (2011) Simultaneous sampling analog-to-digital converters 12-, 14-, 16-bit, eight-channel. Data sheet, Texas Instruments Inc\(\text{. }\)

    Google Scholar 

  101. Texas Instruments (2016) TMS320F2837xD dual-core delfino microcontrollers. Data sheet, Texas Instruments Inc\(\text{. }\)

    Google Scholar 

  102. Texas Instruments (2016) The TMS320F2837xD architecture: achieving a new level of high performance. Technical Brief, Texas Instruments Inc\(\text{. }\)

    Google Scholar 

  103. Tewksbury S (1978) Oversampled, linear predictive and noise-shaping coders of order N> 1. IEEE Trans Circuits Syst 25(7):436–447

    Article  Google Scholar 

  104. Trzynadlowski A (2010) Introduction to modern power electronics. Wiley, New York

    Google Scholar 

  105. Vaidyanathan PP (1992) Multirate systems and filter banks. Prentice Hall Inc., Englewood Cliffs

    Google Scholar 

  106. Verona J (2001) Power digital-to-analog conversion using sigma-delta and pulse width modulations, ECE1371 Analog Electronics II, ECE University of Toronto 2001, vol II, pp 1–14

    Google Scholar 

  107. Vishay (2011) Linear optocoupler, high gain stability, wide bandwidth. Data sheet, Vishay Semiconductor GmbH

    Google Scholar 

  108. Wanhammar L (ed) (1999) DSP integrated circuit. Academic Press, London

    Google Scholar 

  109. Zieliński T (2005) Digital signal processing: from theory to application. Wydawnictwo Komunikacji i Lacznosci, Warsaw (in Polish)

    Google Scholar 

  110. Zolzer U (ed) (2002) DAFX—digital audio effects. Wiley, New York

    Google Scholar 

  111. Zolzer U (ed) (2008) Digital audio signal processing. Wiley, New York

    Google Scholar 

  112. Zumbahlen H (ed) (2007) Basic linear design. Analog Devices Inc., Norwood

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Sozański .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London Ltd.

About this chapter

Cite this chapter

Sozański, K. (2017). Analog Signals Conditioning and Discretization. In: Digital Signal Processing in Power Electronics Control Circuits. Power Systems. Springer, London. https://doi.org/10.1007/978-1-4471-7332-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-7332-8_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-7331-1

  • Online ISBN: 978-1-4471-7332-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics