Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 205))

Abstract

This article surveys the application of the representation theory of loop groups to simple models in quantum field theory and to certain integrable systems. The common thread in the discussion is the construction of quantum fields using vertex operators. These examples include the construction and solution of the Luttinger model and other 1+1 dimensional interacting quantum field theories, the construction of anyon field operators on the circle, the 2nd quantization’ of the Calogero—Sutherland model using anyons and the geometric construction of quantum fields on Riemann surfaces. We describe some new results on the elliptic CalogeroSutherland model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez-Gaumé; L., Bost J.B., Moore G., Nelson P., Vafa C.: Bosonization on higher genus Riemann surfaces, Commun. Math. Phys. 112 503 (1987)

    Article  MATH  Google Scholar 

  2. Awata H., Matsuo Y., Odake S., Shiraishi J.: Excited states of Calogero—Sutherland model and singular vectors of the W(N) algebra, Nucl. Phys. B449, 347 (1995)

    Article  MathSciNet  Google Scholar 

  3. Awata H., Matsuo Y., Odake S., Shiraishi J.: Collective field theory, Calogero—Sutherland model and generalized matrix models, Phys. Lett. B347 49 (1995)

    Google Scholar 

  4. Alvarez-Gaumé L., Moore G., Vafa C.: Theta functions, modular invariance, and strings, Commun. Math. Phys. 106,1 (1986)

    Google Scholar 

  5. Alvarez-Gaumé L., Nelson P., Moore G., Vafa C.: Bosonization in arbitrary genus Phys. Lett. B178 41 (1986)

    Google Scholar 

  6. Araki H.: Bogoliubov automorphisms and Fock representations of canonical anticommutation relations. In Operator algebras and mathematical physics (Iowa City, Iowa, 1985), 23-141, Contemp. Math. 62, Amer. Math. Soc., Providence, RI, 1987

    Google Scholar 

  7. Buchholz D., Mack G., Todorov I.: Localized automorphisms of the U(1) current algebra on the circle: an instructive example. In The algebraic theory of superselection sectors (Palermo, 1989), 356-378, World Sci. Publishing, River Edge, NJ, 1990

    Google Scholar 

  8. Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics. 2. Second edition, Springer, Berlin, 1997

    MATH  Google Scholar 

  9. Cardy J.L.: Conformal invariance. In Phase transitions and critical phenomena, Vol. 11, 55-126, Academic Press, London, 1987

    Google Scholar 

  10. Carey A.L., Eastwood M.G, Hannabuss K.C: Riemann surfaces, Clifford algebras and infinite dimensional groups, Commun. Math. Phys. 130, 217 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carey A.L., Hannabuss K.C.: Infinite dimensional groups and Riemann surface field theories Commun. Math. Phys. 176 321 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carey A.L., Hannabuss K.C., Murray M.K.: Free fermions on Riemann surfaces and spectral curves of the chiral Potts model, in Topological and geometrical methods in field theory (Turku, Finland, 1991), 48-63, Singapore, World Scientific 1992

    Google Scholar 

  13. Carey A.L., Hannabuss K.C., Mason L.J., Singer M.A.: The Landau—Lifshitz equation, elliptic curves and the Ward transform, Commun. Math. Phys. 154, 25 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carey A.L., Hurst C.A., O’Brien D.M.: Fermion currents in 1+1 dimensions, J. Math. Phys. 24 2212 (1983); see also Uhlenbrock D.A., Commun. Math. Phys. 4, 64 (1967)

    Article  Google Scholar 

  15. Carey A.L., Hannabuss K.C.: Temperature states on the loop groups, theta functions and the Luttinger model, J. Func. Anal. 75, 128 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Carey A.L., Hurst C.A.: A note on the boson—fermion correspondence and infinite dimensional groups, Commun. Math. Phys. 98, 435 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Carey A.L., Langmann E.: Loop groups, anyons, and the Calogero-Sutherland model, Commun. Math. Phys. 201, 1 (1999); see also Langmann E.: Algorithms to solve the (quantum) Sutherland model, J. Math. Phys. 42, 4148 (2001)

    Article  MathSciNet  Google Scholar 

  18. Carey A.L., Palmer J.: Infinite complex spin groups, J. Func. Anal. 83, 1 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Carey A.L., Ruijsenaars S.N.M.: On fermion gauge groups, current algebras and Kac—Moody algebras, Acta Appl. Mat. 10, 1 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Carey A.L., Ruijsenaars S.N.M., Wright J.D.: The massless Thirring model: positivity of Klaiber’s n-point functions, Commun. Math. Phys. 99, 347 (1985)

    Article  MathSciNet  Google Scholar 

  21. Carey A.L., Wright J.D.: Hilbert space representations of the gauge groups of some two dimensional field theories, Rev. Math. Phys. 5, 551 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Date E., Jimbo M., Kashiwara M., Miwa T.: Transformation groups for soliton equations. In Nonlinear integrable systems—classical theory and quantum theory (Kyoto, 1981), 39-119, World Sci. Publishing, Singapore, 1983

    Google Scholar 

  23. Eguchi T.: Chiral bosonization on a Riemann surface. In Conformal field theory, anomalies and superstrings (Singapore, 1987), 372-390, World Sci. Publishing, Singapore, 1988

    Google Scholar 

  24. Fay J.D.: Theta functions on Riemann surfaces, Springer Lecture Notes in Mathematics 352, Springer, Berlin, 1973

    Google Scholar 

  25. Frenkel I.B.: Two constructions of affine Lie algebra representations and boson¨Cfermion correspondence in quantum field theory, J. Funct. Anal. 44, 259 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. Griffiths P., Harris J.: Principles of algebraic geometry, WileyIntersci., New York, 1978

    Google Scholar 

  27. Grosse H., Langmann E.: On super current algebras and super Schwinger terms’, Lett. Math. Phys. 21, 69 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Grosse H., Langmann E.: A super-version of quasi-free second quantization. I. Charged particles, J. Math. Phys. 33, 1032 (1992)

    Article  MathSciNet  Google Scholar 

  29. Grosse H., Langmann E., Raschhofer E.: On the Luttinger-Schwinger model, Ann. Phys. (N.Y.) 253, 310 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Goddard P., Olive D.: Kac¨CMoody and Virasoro algebras in relation to quantum physics, Int. J. Mod. Phys Al, 303 (1986); see also Bardakci K., Halpern M. B., Phys. Rev. D 3, 2493 (1971)

    Google Scholar 

  31. Gracia-Bondía M., V¨¢rilly J.C., Figueroa H.: Elements of Non commutative Geometry, Birkhäuser Boston, Cambridge, MA, 2001

    Google Scholar 

  32. Hejhal D.A.: Theta functions, kernel functions and Abelian integrals, Mem. Amer. Math. Soc. 129, 1972

    Google Scholar 

  33. Heidenreich R., Seiler R., Uhlenbrock D.A.: The Luttinger model, J. Statist. Phys. 22, 27 (1980)

    Article  MathSciNet  Google Scholar 

  34. Iso S.: Anyon basis in c = 1 conformal field theory, Nucl. Phys. B443 [FS], 581 (1995)

    Article  MathSciNet  Google Scholar 

  35. Jaffe A., Klimek S., Lesniewski A.: Representations of the Heisenberg algebra on a Riemann surface, Commun. Math. Phys. 126, 421 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kawamoto N., Namikawa Y., Tsuchiya A., Yamada Y.: Geometric realization of conformal field theory on Riemann surfaces, Commun. Math. Phys. 116, 247 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kac V.G.: Infinite dimensional Lie algebras, Third edition, Cambridge Univ. Press, Cambridge, 1990

    Book  MATH  Google Scholar 

  38. Kac V.G., Radul A.: Quasifinite highest weight modules over the Lie algebra of differential operators on the circle, Commun. Math. Phys. 157 429 (1993); see also Bilal A., Phys. Lett. B227 406 (1989); Bakas I., Phys. Lett. B228 57 (1989)

    Google Scholar 

  39. Kac V.G., Raina A.K.: Bombay lectures on highest weight representations of infinite-dimensional Lie algebras, World Sci. Publishing, Teaneck, NJ, 1987

    Google Scholar 

  40. Klaiber B.: The Thirring model, In Quantum theory and statistical physics Vol.XA p141, Barut A.O., Brittin W.E. (eds.), Lectures in Theoretical Physics, New York: Gordon & Breach, 1967; see also Hagen C.H.,Nuovo Cim. 51B,169 (1967)

    Google Scholar 

  41. Langmann E.: Cocycles for boson and fermion Bogoliubov transformations, J. Math. Phys. 35, 96 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  42. Langmann E.: Quantum gauge theories and noncommutative geometry, Acta Phys. Pol. B 27, 2477 (1996) Chep-th/9608003]

    Google Scholar 

  43. Langmann E.: Anyons and the elliptic Calogero-Sutherland model, Lett. Math. Phys. 54, 279 (2000); Second quantization of the elliptic Calogero-Sutherland model, [math-ph/0102005]; and work in progress

    Google Scholar 

  44. Langmann E.: Quantum Theory of Fermion Systems: Topics between Physics and Mathematics. In Geometric methods for quantum field theory (Villa de Leyva, Colombia, 1999), Ocampo H., Paycha S., Reyes A. (eds.), World Scientific, Singapore, 2001

    Google Scholar 

  45. Langmann E., Carey A.L.: Loop groups, Luttinger model, Anyons, and Sutherland systems, Proc. of International Workshop “Mathematical Physics” in Kiev, Ukraine (May 1997), Ukrainian J. Phys. 6-7 vol. 43, 817 (1998)

    Google Scholar 

  46. Langmann E., Semenoff G.W.: QCD(1+1) with massless quarks and gauge covariant Sugawara construction, Phys. Lett. B341, 195 (1994)

    Google Scholar 

  47. Lundberg L.-E.: Quasi-free “second quantization,” Commun. Math. Phys. 50, 103 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  48. Manton N. S.: The Schwinger model and its axial anomaly, Ann. Phys. (N.Y.) 159, 220 (1985); see also Schwinger J., Phys. Rev. 128, 2425 (1962)

    Article  MathSciNet  Google Scholar 

  49. Marotta V., Sciarrino A.: From vertex operators to Calogero-Sutherland models. Nucl. Phys. B476, 351 (1996)

    Article  MathSciNet  Google Scholar 

  50. Mattis D.C., Lieb E.H.: Exact solution of a many-fermion system and its associated boson field, J. Math. Phys. 6, 304 (1965); see also Luttinger J. M., J. Math. Phys. 4, 1154 (1963)

    Article  Google Scholar 

  51. Mickelsson J.: Current Algebras and Groups, Plenum Monographs in Nonlinear Physics, Plenum, New York, 1989

    Google Scholar 

  52. Namikawa Y.: A conformal field theory on Riemann surfaces realized as quantized moduli theory on Riemann surfaces. In Theta functions—Bowdoin 1987, Part 1 (Brunswick, ME, 1987), 413-443, Proc. Sympos. Pure Math., Part 1, Amer. Math. Soc., Providence, RI, 1989

    Google Scholar 

  53. Pressley A., Segal G.: Loop Groups, Oxford Math. Monographs, Oxford, 1986

    Google Scholar 

  54. Raina A.K.: Fay’s trisecant identity and Wick’s theorem: an algebraic geometry viewpoint, Exposition. Math. 8, 227 (1990)

    MathSciNet  MATH  Google Scholar 

  55. Raina A.K.: An algebraic geometry view of currents in a model quantum field theory on a curve, C. R. Acad. Sci. Paris Sér. I Math. 318, 851 (1994)

    MathSciNet  MATH  Google Scholar 

  56. Ruijsenaars S.N.M.: On Bogoliubov transformations for systems of relativistic charged particles, J. Math. Phys. 18, 517 (1977)

    Article  MathSciNet  Google Scholar 

  57. Segal G.B.: Unitary representations of some infinite-dimensional groups, Commun. Math. Phys. 80, 301 (1981)

    Google Scholar 

  58. Segal G.B.: The definition of conformal field theory, (draft of paper)

    Google Scholar 

  59. Sutherland B.: Exact results for a quantum many body problem in one-dimension, Phys. Rev. A4 2019 (1971) and A5, 1372 (1972); see also Calogero F., J. Math. Phys. 10, 2197 and 2197 (1969) and 12, 419 (1971)

    Google Scholar 

  60. Segal G.B. and Wilson G.: Loop groups and equations of KdV type, Publ. Math. IHES 61, 5 (1989)

    Google Scholar 

  61. Thirring W.: A soluble relativistic field theory?, Ann. Phys. (N.Y.) 3, 91 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  62. Wilson K.G.: Operator product expansions and anomalous dimensions in the Thirring model, Phys. Rev. D2, 1473 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carey, A.L., Langmann, E. (2002). Loop Groups and Quantum Fields. In: Bouwknegt, P., Wu, S. (eds) Geometric Analysis and Applications to Quantum Field Theory. Progress in Mathematics, vol 205. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0067-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0067-3_3

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6597-9

  • Online ISBN: 978-1-4612-0067-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics