Skip to main content

Wilson Bases on the Interval

  • Chapter
Advances in Gabor Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

In this chapter biorthogonal Wilson bases for L 2([0N]) are investigated. The approach uses the even, periodic extension of functions defined on the interval. Starting from Wilson bases for periodic functions, Wilson bases for even, periodic functions are constructed. The basis functions are finally restricted to a suitable interval. Dual bases and Riesz bounds are given explicitly. The construction is based on a Zak transform for periodic functions and an unfolding operator for periodic Wilson bases. Fast algorithms for analysis and synthesis are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Auslander, I. C. Gertner, and R. Tolimieri. The discrete Zak transform applicationt to time-frequency analysis and synthesis of nonstationary signals.IEEE Trans. Signal Processing39:825–835, 1991.

    Article  Google Scholar 

  2. R. Balian. Un principe d’incertitude fort en théorie du signal ou en mécanique quantique.C. R. Acad. Sci. Paris292:1357–1362, 1981.

    MathSciNet  Google Scholar 

  3. J. J. Benedetto and D. F. Walnut. Gabor frames of L2and related spaces. In J. J. Benedetto and M. W. Frazier, editorsWavelets: Mathematics and Applications, pages 97–162. CRC Press, Boca Raton, FL, 1994.

    Google Scholar 

  4. [] K. Bittner. Biorthogonal local trigonometric bases. In G. Anastassiou, editorHandbook on Analytic-Computational Methods in Applied Mathematics.CRC Press, 2000.

    Google Scholar 

  5. K. Bittner.Verallgemeinerte Klappoperatoren und Biorthogonale Wilson-Basen.PhD thesis, Technische Universität München, 2000. Shaker Verlag Aachen.

    Google Scholar 

  6. C. K. Chui and X. Shi. A study of biorthogonal sinusoidal wavelets. In C. Rabut A. LeMehaute and L. L. Schumaker, editorsSurface Fitting and Multiresolution MethodsInnovations in Applied Mathematics, pages 51–66. Vanderbilt University Press, Nashville, 1997.

    Google Scholar 

  7. C. K. Chui and X. Shi. Wavelets of Wilson type with arbitrary shapes.Appl. Comput. Harmon. Anal.8:1–23, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  8. Wilson Bases on the Interval 221

    Google Scholar 

  9. R. R. Coifman and Y. Meyer. Gaussian bases.Appl. Comput. Harmon. Anal.2:299–302, 1995.

    Article  MathSciNet  Google Scholar 

  10. I. Daubechies.Ten Lectures on Wavelets.CBMS-NSF Reg. Conf. Ser. Appl. Math. 61. SIAM, Philadelphia, PA, 1992.

    Google Scholar 

  11. I. Daubechies, S. Jaffard, and J. L. Journé. A simple Wilson orthonormal basis with exponential decay.SIAM J. Math. Anal.22:554–573, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  12. H. G. Feichtinger, K. Gröchenig, and D. Walnut. Wilson bases and modulation spaces.Math. Nachr.155:7–17, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  13. H. G. Feichtinger and T. Strohmer, editors.Gabor Analysis and Algorithms: Theory and Applications.Birkhäuser, Boston, 1998.

    MATH  Google Scholar 

  14. D. Gabor. Theory of communication.J. IEE93:429–457, 1946.

    Google Scholar 

  15. F. Low. Complete sets of wave packets. In C. DeTar, editorA Passion for Physics — Essays in Honor of Geoffrey Chew.World Scientific, Singapore, 1985.

    Google Scholar 

  16. P. Prinz. Theory and algorithms for discrete 1-dimensional Gabor frames. Preprint, University of Vienna, 1996.

    Google Scholar 

  17. D. J. Sullivan, J. J. Rehr, J. W. Wilkins, and K. G. Wilson. Phase space Warnier functions in electronic structure calculations. Preprint, Cornell University, 1987.

    Google Scholar 

  18. C. Van Loan.Computational Frameworks for the Fast Fourier Transform.SIAM, Philadelphia, 1992.

    Google Scholar 

  19. K. G. Wilson. Generalized Warnier functions. Preprint, Cornell University, 1987.

    Google Scholar 

  20. R. Young.An Introduction to Nonharmonic Fourier SeriesAcademic Press, New York, 1980.

    MATH  Google Scholar 

  21. M. Zibulski and Y. Zeevi. Oversampling in the Gabor scheme.IEEE Trans. Signal Processing41:2679–2687, 1993.

    Article  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bittner, K. (2003). Wilson Bases on the Interval. In: Feichtinger, H.G., Strohmer, T. (eds) Advances in Gabor Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0133-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0133-5_9

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6627-3

  • Online ISBN: 978-1-4612-0133-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics