Skip to main content

Receptors and the Inositol Phosphate-Calcium Signaling System

  • Chapter
The Tachykinin Receptors

Part of the book series: The Receptors ((REC))

Abstract

Extracellular stimuli modify [Ca2+]ithrough a variety of signaling systems. The most widespread of these is a system that signals Ca2+ mobilization through the formation of Ca2+-mobilizing messengers, the inositol polyphosphates. This inositol polyphosphate—Ca2+ signaling system is associated with many growth factor, hormone, and neurotransmitter receptor mechanisms and is the focus of this chapter. A schematic diagram of the components of this system is presented in Fig. 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Latif, A. A., Akhtar, R., and Hawthorne, J. N. (1977) Acetylcholine increases the breakdown of triphosphoinositide of rabbit iris muscle prelabeled with [32P]phosphate.Biochem. J. 162, 61–73.

    PubMed  CAS  Google Scholar 

  • Aub, D. L. and Putney, J. W., Jr. (1985) Properties of receptor-controlled inositol trisphosphate formation in parotid acinar cells.Biochem. J. 225, 263–266.

    PubMed  CAS  Google Scholar 

  • Bansal, V. S., Inhorn, R. C., and MaJerus, P. W. (1987) The metabolism of inositol 1,3,4-trisphosphate to inositol 1,3-bisphosphate.J. Biol. Chem. 262, 9444–9447.

    PubMed  CAS  Google Scholar 

  • Benovic, J. L., Bouvier, M., Caron, M. G., and Lefkowitz, R. J. (1988) Regulation of adenylyl cyclase-coupled-adrenergic receptors.Annu. Rev. Cell Biol. 4, 405–428.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. J. (1983) Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol.Biochem. J. 212, 849–858.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J. (1990) Calcium oscillations.J. Biol. Chem. 266, 9583–9586.

    Google Scholar 

  • Berridge, M. J. (1992) Inositol trisphosphate and calcium oscillations.Adv. Second Mess. Phosphoprotein Res. 26, 211–223.

    CAS  Google Scholar 

  • Bird, G. St. J., Oliver, K. G., Horstman, D. A., Obie, J. F., and Putney, J. W., Jr. (1991a) Relation between the calcium-mobilizing action of inositol 1,4,5trisphosphate in permeable AR4–2J cells and the estimated levels of inositol 1,4,5trisphosphate in intact AR4–2J cells.Biochem. J. 273, 541–546.

    CAS  Google Scholar 

  • Bird, G. St. J., Takemura, H., Thastrup, O., Putney, J. W., Jr., and Menniti, F. S. (1991b) Mechanism of activated Cat* entry in the rat pancreatoma cell line, AR42J.Cell Calcium 13, 49–58.

    Article  Google Scholar 

  • Bird, G. St. J., Obie, J. F., and Putney, J. W., Jr. (1992a) Functional homogeneity of the nonmitochondrial Cat+-pool in intact mouse lacrimal acinar cells.J. Biol. Cem. 267, 18382–18386.

    Google Scholar 

  • Bird, G. St. J., Rossier, M. F., Hughes, A. R., Shears, S. B., Armstrong, D. L., and Putney, J. W., Jr. (1992b) Activation of Ca’ entry into acinar cells by a nonphosphorylatable inositol trisphosphate.Nature 362, 162–165.

    Google Scholar 

  • Burgess, G. M., Bird, G. St. J., Obie, J. F., and Putney, J. W., Jr. (1991) The mechanism for synergism between phospholipase C- and adenylyl cyclase-linked hormones in liver. Cyclic AMP-dependent kinase augments inositol trisphosphate-mediated Ca“ mobilization without increasing the cellular levels of inositol polyphosphates.J. Biol. Chem. 266, 4772–4781.

    PubMed  CAS  Google Scholar 

  • Casteels, R. and Droogmans, G. (1981) Exchange characteristics of the noradrenaline-sensitive calcium store in vascular smooth muscle cells of rabbit ear artery.J. Physiol. (Lond. 317, 263–279.

    CAS  Google Scholar 

  • Chang, M. M. and Leeman, S. E. (1970) Isolation of a sialogogic peptide from bovine hypothalamic tissue and its characterization as SP.J. Biol. Chem. 245, 4784–4790.

    PubMed  CAS  Google Scholar 

  • Changya, L., Gallacher, D. V., Irvine, R. F., and Petersen, O. H. (1989a) Inositol 1,3,4,5-tetrakisphosphate and inositol 1,4,5-trisphosphate act by different mechanisms when controlling Caz+ in mouse lacnmal cells.FEBS Lett. 251, 43–48.

    Article  CAS  Google Scholar 

  • Changya, L., Gallacher, D. V., Irvine, R. F., Potter, B. V. L., and Petersen, O. H. (1989b) Inositol 1,3,4,5-trisphosphate is essential for sustained activation of the Caz+-dependent K* current in single internally perfused lacrimal cells.J. Membrane Biol. 109, 85–93.

    Article  CAS  Google Scholar 

  • Combettes, L., Claret, M., and Champeil, P. (1992) Do submaximal InsP3concentrations only induce the partial discharge of permeabilized hepatocyte pools because of the concomitant reduction of intraluminal Ca“ concentration?FEBS Lett. 301, 287–290.

    Article  PubMed  CAS  Google Scholar 

  • Connolly, T. M., Wilson, D. B., Bross, T. E., and Majerus, P. W. (1986) Isolation and characterization of the inositol cyclic phosphate products of phosphoinositide cleavage by phospholipase C. Metabolism in cell-free extracts.J. Biol. Chem. 261, 122–126.

    PubMed  CAS  Google Scholar 

  • Crouch, M. F. and Lapetina, E. G. (1989) Dual mechanisms of platelet hormone receptor desensitization. Differential importance between agonists of protein kinase C-dependent and -independent pathways.J. Biol. Chem. 264, 584–588.

    PubMed  CAS  Google Scholar 

  • Cuthbertson, K. S. R. and Cobbold, P. H. (eds.) (1991) Oscillations in cell calcium (Collected papers and reviews).Cell Calcium 12, 61–268.

    Article  PubMed  CAS  Google Scholar 

  • Dargemont, C., Hilly, M., Claret, M., and Mauger, J.-P. (1988) Characterization of Ca“ fluxes in rat liver plasma-membrane vesicles.Biochem. J. 256, 117–124.

    PubMed  CAS  Google Scholar 

  • Delfert, D. M., Hill, S., Pershadsingh, H. A., and Sherman, W. R. (1986) myo-Inositol 1,4,5-trisphosphate mobilizes Ca“ from isolated adipocyte endoplasmic reticulum but not from plasma membranes.Biochem. J. 236, 37–44.

    PubMed  CAS  Google Scholar 

  • Demaurex, N., Lew, D. P., and Krause, K-H. (1992) Cyclopiazonic acid depletes intracellular Ca“ stores and activates an influx pathway for divalent cations in HL-60 cells.J. Biol. Chem. 267, 2318–2324.

    PubMed  CAS  Google Scholar 

  • Deng, H.-W. and Kwan, C.-Y. (1991) Cyclopiazonic acid is a sarcoplasmic reticulum Cat+-pump inhibitor of rat aortic smooth muscle.Acta Pharmacol. Sinica 12, 1–6.

    Google Scholar 

  • Downes, C. P., Mussat, M. C., and Michell, R. H. (1982) The inositol trisphosphate phosphomonoesterase of the human erythrocyte membrane.Biochem. J. 203, 169–177.

    PubMed  CAS  Google Scholar 

  • Ferris, C. D. and Snyder, S. H. (1992) Inositol 1,4,5-trisphosphate-activated calcium channels.Annu. Rev. Physiol. 64, 469–488.

    Article  Google Scholar 

  • Gawler, D. J., Potter, B. V. L., Gigg, R., and Nahorski, S. R. (1991) Interactions between inositol tris-and tetrakis-phosphates. Effects on intracellular Cat+ mobilization in SH-SY5Y cells.Biochem. J. 276, 163–167.

    PubMed  CAS  Google Scholar 

  • Hanley, M. R., Lee, C. M., Jones, L. M., and Michell, R. H. (1980) Similar effects of SP and related peptides on salivation and on phosphatidylinositol turnover in rat salivary glands.Mol. Pharmacol. 18, 78–83.

    PubMed  CAS  Google Scholar 

  • Hepler, J. R., Earp, H. S., and Harden, T. K. (1988) Long-term phorbol ester treatment down-regulates protein kinase C and sensitizes the phosphoinositide signaling pathway to hormone and growth factor stimulation. Evidence for a role of protein kinase C in agonist-induced desensitization.J. Biol. Chem. 263, 7610–7619.

    PubMed  CAS  Google Scholar 

  • Hokin, M. R. and Hokin, L. E. (1954) Effects of acetylcholine on phospholipides in the pancreas.J. Biol. Chem. 209, 549–558.

    PubMed  CAS  Google Scholar 

  • Horstman, D. A., Takemura, H., and Putney, J. W., Jr. (1988) Formation and metabolism of [3H]inositol phosphates in AR42J pancreatoma cells: SP-induced Ca’ mobilization in the apparent absence of inositol 1,4,5-trisphosphate 3-kinase activity.J. Biol. Chem. 263, 15297–15303.

    PubMed  CAS  Google Scholar 

  • Hughes, A. R., Takemura, H., and Putney, J. W., Jr. (1988) Kinetics of inositol 1,4,5-trisphosphate and inositol cyclic 1:2,4,5-tIisphosphate metabolism in intact rat parotid acinar cells: Relationship to calcium signaling.J. Biol. Chem. 263, 10314–10319.

    PubMed  CAS  Google Scholar 

  • Inhorn, R. C., Bansal, V. S., and Majerus, P. W. (1987) Pathway for 1,3,4-trisphosphate and 1,4-bisphosphate metabolism.Proc. Natl. Acad Sci. USA 84, 2170–2174.

    Article  PubMed  Google Scholar 

  • Irvine, R. F., Letcher, A. J., Heslop, J. P., and Berridge, M. J. (1986a) The inositol tris/ tetrakisphosphate pathway—demonstration of Ins(1,4,5)P3 3-kinase activity in animal tissues.Nature 320, 631–634.

    Article  CAS  Google Scholar 

  • Irvine, R. F., Letcher, A. J., Lander, D. J., and Berridge, M. J. (1986b) Specificity of inositol phosphate-stimulated Caz+ mobilization from Swiss-mouse 3T3 cells.Biochem..1. 240, 301–304.

    CAS  Google Scholar 

  • Irvine, R. F., Moor, R. M., Pollock, W. K., Smith, P. M., and Wreggett, K. A. (1988) Inositol phosphates: proliferation, metabolism and function.Phil. Trans. R. Soc. Lond. B 320, 281–298.

    Article  CAS  Google Scholar 

  • Irvine, R. F. (1989) How do inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetra kisphosphate regulate intracellular Caz+?Biochem. Soc. Trans. 17, 6–9.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F. (1990) “Quantal” Ca’ release and the control of Cat+ entry by inositol phosphates—a possible mechanism.FEBS Lett. 263, 5–9.

    Article  PubMed  CAS  Google Scholar 

  • Irvine, R. F. and Moor, R. M. (1986) Micro-injection of inositol 13,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Caz+.Biochem. J. 240, 917–920.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F. and Moor, R. M. (1987) Inositol(1,3,4,5)tetrakisphosphate-induced activation of sea urchin eggs requires the presence of inositol trisphosphate.Biochem. Biophys. Res. Comm. 146, 284–290.

    Article  PubMed  CAS  Google Scholar 

  • Ivorra, I., Gigg, R., Irvine, R. F., and Parker, I. (1991) Inositol 1,3,4,6-tetrakisphosphate mobilizes calcium inXenopusoocytes with high potency.Biochem. J. 273, 317–321.

    PubMed  CAS  Google Scholar 

  • Jackson, T. R., Patterson, S. I., Thastrup, O., and Hanley, M. R. (1988) A novel tumour promoter, thapsigargin, transiently increases cytoplasmic free Caz+ without generation of inositol phosphates in NG115–401L neuronal cells.Biochem. J. 263, 81–86.

    Google Scholar 

  • Jean, T. and Klee, C. B. (1986) Calcium modulation of inositol 1,4,5-trisphosphateinduced calcium release from neuroblastoma x glioma hybrid (NG108–15) microsomes. J. Biol. Chem.261, 16414–16420.

    PubMed  CAS  Google Scholar 

  • Johnson, R. M., Connellly, P. A., Sisk, R. B., Pobiner, B. F., Hewlett, E. L., and Garrison, J. C. (1986) Pertussis toxin or phorbol 12-myristate 13-acetate can distinguish between epidermal growth factor-and angiotensin-stimulated signals in hepatocytes.Proc. Nat. Acad. Sci. USA 83, 2032–2036.

    Article  PubMed  CAS  Google Scholar 

  • Jones, L. M. and Michell, R. H. (1978) Enhanced phosphatidylinositol breakdown as a calcium-independent response of rat parotid fragments to substance P.Biochem. Soc. Trans. 6, 1035–1037.

    PubMed  CAS  Google Scholar 

  • Khan, A. A., Steiner, J. P., Klein, M. G., Schneider, M. F., and Snyder, S. H. (1992) IP3receptor: Localization to plasma membrane of T cells and cocapping with the T cell receptor.Science 257, 815–818.

    Article  PubMed  CAS  Google Scholar 

  • Kirk, C. J., Creba, J. A., Downes, C. P., and Michell, R. H. (1981) Hormone-stimulated metabolism of inositol lipids and its relationship to hepatic receptor function.Biochem. Soc. Trans. 9, 377–379.

    PubMed  CAS  Google Scholar 

  • Kuno, M. and Gardner, P. (1987) Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes.Nature 326, 301–304.

    Article  PubMed  CAS  Google Scholar 

  • Kwan, C. Y., Takemura, H., Obie, J. F., Thastrup, O., and Putney, J. W., Jr. (1990) Effects of methacholine, thapsigargin and Lai+ on lasmalemmal and intracellular Caz+ transport in lacrimal acinar cells.Am. J. Physiol. 258, C1006–C1015.

    PubMed  CAS  Google Scholar 

  • Labarca, R., Janowsky, A., Patel, J., and Paul, S. M. (1984) Phorbol esters inhibit agonist-induced [3H] inositol-l-phosphate accumulation in rat hippocampal slices.Biochem. Biophys. Res. Commun. 123, 703–709.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C. H. and Hokin, L. E. (1989) Inositol 1,2-cyclic 4,5-trisphosphate is an order of magnitude less potent than inositol 1,4,5-trisphosphate in mobilizing intracellular stores of calcium in mouse pancreatic acinar cells.Biochem. Biophys. Res. Commun. 159, 561–565.

    Article  PubMed  CAS  Google Scholar 

  • Liles, W. C., Hunter, D. D., Meier, K. E., and Nathanson, N. M. (1986) Activation of protein kinase C induces rapid internalization and subsequent degradation of muscarinic acetylcholine receptors in neuroblastoma cells.J. Biol. Chem. 261, 5307–5313.

    PubMed  CAS  Google Scholar 

  • Llano, I., Marty, A., and Tanguy, J. (1987) Dependence of intracellular effects of GTP(y)S and inositoltrisphosphate on cell membrane potential and on external Ca ions.Pflüger’s Arch. 409, 499–506.

    Article  CAS  Google Scholar 

  • Llopis, J., Chow, S. B., Kass, G. E. N., Gahm, A., and Orrenius, S. (1991) Comparision between the effects of the microsomal Call“-translocase inhibitors thapsigargin and 2,5-di-(t-butyl)-1,4-benzohydroquinone on cellular calcium fluxes.Biochem. J. 277, 553–556.

    PubMed  CAS  Google Scholar 

  • Majerus, P. W., Connolly, T. M., Bansal, V. S., Inhorn, R. C., Ross, T. S., and Lips, D. L. (1988) Inositol phosphates: Synthesis and degradation.J. Biol. Chem. 263, 3051–3054.

    PubMed  CAS  Google Scholar 

  • Marier, S. H., Putney, J. W., Jr., and Van de Walle, C. M. (1978) Control of calcium channels by membrane receptors in the rat parotid gland.J. Physiol. (Lond. 279, 141–151.

    CAS  Google Scholar 

  • Mason, M. J., Garcia-Rodriquez, C., and Grinstein, S. (1991) Coupling between intracellular Caz+ stores and the Ca’ permeability of the plasma membrane. Comparison of the effects of thapsigargin, 2,5-di-(tert-butyl)-1,4-hydroquinone, and cyclopiazonic acid in rat thymic lymphocytes.J. Biol. Chem. 266 20856–20862.

    PubMed  CAS  Google Scholar 

  • Meldolesi, J., Clementi, E., Fasolato, C., Zacchetti, D., and Pozzan, T. (1991) Caz+ influx following receptoractivation. Trends Pharmacol. Sci. 12, 289–292.

    Article  CAS  Google Scholar 

  • Menniti, F. S., Oliver, K. G., Nogimori, K., Obie, J. F., Shears, S. B., and Putney, J. W., Jr. (1990) Origins of myoinositol tetrakisphosphates in agonist-stimulated rat pancreatoma cells: Stimulation by bombesin of myoinositol (1,3,4,5,6) pentakisphosphate breakdown to myoinositol (3,4,5,6)tetrakisphosphate.J. Biol. Chem. 265, 11167–11176.

    PubMed  CAS  Google Scholar 

  • Menniti, F. S., Bird, G. St. J., Takemura, H., Thastrup, O., Potter, B. V. L., and Putney, J. W., Jr. (1991) Mobilization of calcium by inositol trisphosphate from permeabilized rat parotid acinar cells. Evidence for translocation of calcium from uptake to release sites within the inositol 1,4,5-trisphosphate-and thapsigargin-sensitive calcium pool.J. Biol. Chem. 266, 13646–13653.

    PubMed  CAS  Google Scholar 

  • Menniti, F. S., Miller, R. N., Putney, J. W., Jr., and Shears, S. B. (1993) Rapid turnover of inositol polyphosphate pyrophosphates in pancreatoma cells.J. Biol. Chem. 268, 3850–3856.

    PubMed  CAS  Google Scholar 

  • Menniti, F. S., Oliver, K. G., Putney, J. W., Jr., and Shears, S. B. (1993) Inositol phosphates and cell signaling: New views of InsP6and InsP6.Trends Biochem. Sci. 18, 53–56.

    Article  PubMed  CAS  Google Scholar 

  • Merritt, J. E. and Rink, T. J. (1987a) The effects of SP and carbachol on inositol tris-and tetrakisphosphate formation and cytosolic free calcium in rat parotid acinar cells. A correlation between inositol phosphate levels and calcium entry.J. Biol. Chem. 262 14912–14916.

    CAS  Google Scholar 

  • Merritt, J. E. and Rink, T. J. (1987b) Regulation of cytosolic free calcium in fura-2loaded rat parotid acinar cells.J. Biol. Chem. 262, 17362–17369.

    CAS  Google Scholar 

  • Meyer, T. and Stryer, L. (1990) Transient calcium release induced by successive increments of inositol 1,4,5-trisphosphate.Proc. Natl. Acad. Sci. USA 87, 3841–3845.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, T. and Stryer, L. (1991) Calcium spiking.Annu. Rev. Biophys. Biophys. Chem. 20, 153–174.

    Article  PubMed  CAS  Google Scholar 

  • Michell, R. H. (1986) Inositol Lipids and their role in receptor function: History and general principles, inPhosphoinositides and Receptor MechanismsPutney, J. W., Jr., ed.), Alan Liss, New York, pp. 1–24.

    Google Scholar 

  • Michell, R. H. (1975) Inositol phospholipids and cell surface receptor function.Biochim. Biophys. Acta 416, 81–147.

    Google Scholar 

  • Missiaen, L., DeSmedt, J., Droogmans, G., and Casteels, R. (1992) Ca“ release induced by inositol 1,4,5-trisphosphate is a steady-state phenomenon controlled by luminal Ca” in permeabilized cells.Nature 367, 599–602.

    Article  Google Scholar 

  • Molleman, A., Hoiting, B., Duin, M., van den Akker, J., Nelemans, A., and Den Hertog, A. (1991) Potassium channels regulated by inositol 1,3,4,5-tetrakisphosphate and internal calcium in DDT 2 smooth muscle cells.J. Biol. Chem. 266, 5658–5663.

    PubMed  CAS  Google Scholar 

  • Morris, A. P., Gallacher, D. V., Irvine, R. F., and Petersen, O. H. (1987) Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca“-dependent K* channels.Nature 330, 653–655.

    Article  PubMed  CAS  Google Scholar 

  • Muallem, S., Pandol, S.J., and Beeker, T. G. (1989) Hormone-evoked calcium release from intracellular stores is a quantal process.J. Biol. Chem. 264, 205–212.

    PubMed  CAS  Google Scholar 

  • Muldoon, L. L., Jamieson, G. A., Jr., and Villereal, M. L. (1987) Calcium mobilization in permeabilized fibroblasts: Effects of inositol trisphosphate, orthovanadate, mitogens, phorbol ester, and guanosine triphosphate.J. Cell. Physiol. 130, 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Nogimori, K, Menniti, F. S., and Putney, J. W., Jr. (1990) Identification in extracts from AR4–2J cells of inositol (1,4,5)trisphosphate by its susceptibility to inositol (1,4,5)trisphosphate 3-kinase and 5-phosphatase.Biochem. J. 269, 195–200.

    PubMed  CAS  Google Scholar 

  • Nunn, D. L. and Taylor, C. W. (1992) Luminal Ca“ increases the sensitivity of the Ca” stores to inositol 1,4,5-trisphosphate.Mol. Pharmacol. 41, 115–119.

    PubMed  CAS  Google Scholar 

  • Oldershaw, K. A., Nunn, D. L., and Taylor, C. W. (1991) Quantal Ca’ mobilization stimulated by inositol 1,4,5-trisphosphate in permeabilized hepatocytes.Biochem. J. 278, 704–708.

    Google Scholar 

  • Orellana, S., Solski, P. A., and Brown, J. H. (1987) Guanosine 5’-O-(thiophosphate)dependent inositol trisphosphate formation in membranes is inhibited by phorbol ester and protein kinase C.J. Biol. Chem. 262, 1638–1643.

    PubMed  CAS  Google Scholar 

  • Osugi, T., Imaizumi, T., Mizushim, A., Uchida, S., and Yoshida, H. (1987) Phorbol ester inhibits bradykinin-stimulated inositol trisphosphate formation and calcium mobilization in neuroblastoma x glioma hybrid NG108–15 cells.J. Pharmacol. Exp. Ther. 240, 617–622.

    PubMed  CAS  Google Scholar 

  • Penner, R., Matthews, G., and Neher, E. (1988) Regulation of calcium influx by second messengers in rat mast cells.Nature 334, 499–504.

    Article  PubMed  CAS  Google Scholar 

  • Putney, J. W., Jr. (1986) A model for receptor-regulated calcium entry.Cell Calcium 7, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Putney, J. W., Jr., Aub, D. L., Taylor, C. W., and Merritt, J. E. (1986) Formation and biological action of inositol 1,4,5-trisphosphate.Fed. Proc.45, 2634–2638. Putney, J. W., Jr. (1987) Calcium-mobilizing receptors.Trends Pharmacol. Sci. 8, 481–486.

    Google Scholar 

  • Putney, J. W., Jr. (1990) Capacitative calcium entry revisited.Cell Calcium 11611–624.

    Article  PubMed  CAS  Google Scholar 

  • Putney, J. W., Jr., Bird, G. St. J., Horstman, D. A., Hughes, A. R., Menniti, F. S., Nogimori, K., Obie, J. F., Oliver, K. G., Sugiya, H., and Takemura, H. (1991) Role of inositol phosphates in the actions of SP on NK1receptors in exocrine gland cells.Ann. NY. Acad. Sci. 632, 94–103.

    Article  PubMed  CAS  Google Scholar 

  • Putney, J. W., Jr. (1992a) Inositol phosphates and calcium entry.Adv. Second Messenger Phosphoprotein Res. 26, 143–160.

    CAS  Google Scholar 

  • Putney, J. W., Jr. (ed.) (1992bInositol Phosphates and Calcium Signalingvol. 26:Advances in Second Messenger and Phosphprotein ResearchRaven, New York.

    Google Scholar 

  • Rengasamy, A. and Feinberg, H. (1988) Inositol 1,4,5-trisphosphate-induced calcium release from platelet plasma membrane vesicles.Biochem. Biophys. Res. Commun. 150, 1021–1026.

    Article  PubMed  CAS  Google Scholar 

  • Rudich, L. and Butcher, F. R. (1976) Effect of substance P and eledoisin on K efflux, amylase release, and cyclic nucleotides in slices of rat parotid gland.Biochim. Biophys. Acta 444, 704–711.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, I., Streb, H., Bayerdorffer, E., and Thevenod, F. (1985) Stimulus-secretion coupling in exocrine glands: The role of inositol-1,4,5-trisphosphate, calcium and cAMP.Current Eye Res. 4, 467–473.

    Article  CAS  Google Scholar 

  • Shears, S. B., Parry, J. B., Tang, E. K. Y., Irvine, R. F., Michell, R. H., and Kirk, C. J. (1987) Metabolism of D-myo-inositol 1,3,4,5-tetrakisphosphate by rat liver, including the synthesis of a novel isomer of myo-inositol tetrakisphosphate.Biochem. J. 246, 139–147.

    PubMed  CAS  Google Scholar 

  • Shuttleworth, T. J. (1992) Caz+ release from inositol trisphosphate-sensitive stores is not modulated by intraluminal [Caz+].J. Biol. Chem. 267, 3573–3576.

    PubMed  CAS  Google Scholar 

  • Slack, B. E., Bell, J. E., and Benos, D. J. (1986) Inositol 1,4,5-risphosphate injection mimics fertilization potentials in sea urchin eggs. Am.J. Physiol. 250, C340–C344.

    PubMed  CAS  Google Scholar 

  • Stephens, L., Radenberg, T., Thiel, U., Vogel, G., Khoo, K.-H., Dell, A., Jackson, T. R., and Hawkins, P. T. (1992) Pyrophosphorylated inositol hexakisphosphates: A new form of high energy phosphate in cells.J. Biol. Chem.submitted.

    Google Scholar 

  • Strasser, R. H., Benovic, J. L., Caron, M. G., and Lefkowitz, R. J. (1986) ß-agonistand prostaglandin El-induced translocation of the ß-adrenergic receptor kinase: Evidence that the kinase may act on multiple adenylate cyclase-coupled receptors.Proc. Natl. Acad. Sci. USA 83, 6362–6366.

    Article  PubMed  CAS  Google Scholar 

  • Streb, H., Irvine, R. F., Berridge, M. J., and Schulz, I. (1983) Release of Caz+ from a nonmitochondrial store in pancreatic cells by inositol-1,4,5-trisphosphate.Nature 306, 67–68.

    Article  PubMed  CAS  Google Scholar 

  • Sugiya, H., Tennes, K. A., and Putney, J. W., Jr. (1987) Homologous desensitization of substance-P-induced inositol polyphosphate formation in rat parotid acinar cells.Biochem. J. 244, 647–653.

    PubMed  CAS  Google Scholar 

  • Sugiya, H., Obie, J. F., and Putney, J. W., Jr. (1988) Two modes of regulation of the phospholipase C-linked substance P receptor in rat parotid acinar cells.Biochem. J. 253, 459–446.

    PubMed  CAS  Google Scholar 

  • Sugiya, H. and Putney, J. W., Jr. (1988a) Protein kinase C-dependent and -independent mechanisms regulating the parotid substance P receptor as revealed by differential effects of protein kinase C inhibitors.Biochem. J. 266, 677–680.

    Google Scholar 

  • Sugiya, H. and Putney, J. W., Jr. (1988b) Substance P receptor desensitization requires activation of receptor, but not phospholipaseC. Am. J. Physiol. 255, C149–C154.

    CAS  Google Scholar 

  • Supattapone, S., Worley, P. F., Baraban, J. M., and Snyder, S. H. (1988) Solubilization, purification, and characterization of an inositol trisphosphate receptor.J. Biol. Chem. 263, 1530–1534.

    PubMed  CAS  Google Scholar 

  • Takemura, H., Hughes, A. R., Thastrup, O., and Putney, J. W., Jr. (1989) Activation of calcium entry by the tumor promoter, thapsigargin, in parotid acinar cells. Evidence that an intracellular calcium pool, and not an inositol phosphate, regulates calcium fluxes at the plasma membrane.J. Biol. Chem. 264, 12266–12271.

    PubMed  CAS  Google Scholar 

  • Taylor, C. W., Merritt, J. E., Putney, J. W., Jr., and Rubin, R. P. (1986) A guanine nucleotide-dependent regulatory protein couples substance P receptors to phospholipase C in rat parotid gland.Biochem. Biophys. Res. Commun. 136, 362–368.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, C. W. (1992) Kinetics of inositol 1,4,5-trisphosphate-stimulated Ca“ mobilization, inInositol Polyphosphates and Calcium Signalling.vol. 26:Advances in Second Messenger and Phosphoprotein ResearchPutney, J. W., Jr., ed.), Raven, New York, pp. 109–142.

    Google Scholar 

  • Taylor, C. W. and Merritt, J. E. (1986) Receptor coupling to polyphosphoinositide turnover: A parallel with the adenylate cyclase system.Trends Pharmacol. Sci. 7, 238–242.

    Article  CAS  Google Scholar 

  • Taylor, C. W. and Potter, B. V. L. (1990) The size of inositol 1,4,5-trisphosphatesensitive Ca“ stores depends on inositol 1,4,5-trisphosphate concentration.Biochem. J. 266, 189–194.

    PubMed  CAS  Google Scholar 

  • Thastrup, O. (1990) Role of Ca“-ATPases in regulation of cellular Ca” signaling, as studied with the selective microsomal Caz+-ATPase inhibitor, thapsigargin.Agents and Actions 29, 8–15.

    Article  PubMed  CAS  Google Scholar 

  • Thevenod, F. and Schulz, I. (1988)11+-dependent calcium uptake into an 1P3-sensitive calcium pool from rat parotid gland.Am. J. Physiol. 255, G429–G440.

    PubMed  CAS  Google Scholar 

  • Thomas, A. P., Renard, D. C., and Rooney, T. A. (1992) Spatial organization of Ca“ signaling and Ins(1,4,5)P3 action.Adv. Second Mess. Phosphoprotein Res. 26, 225–263.

    CAS  Google Scholar 

  • Ueda, T., Church, S. H., Noel, M. W., and Gill, D. L. (1986) Influence of inositol 1,4,5-trisphosphate and guanine nucleotides on intracellular calcium release within the N1E-115 neuronal cell line.J. Biol. Chem. 261, 3184–3192.

    PubMed  CAS  Google Scholar 

  • Watson, S. P. and Abbott, A. (1990) TIPS receptor nomenclature supplement: Tachykinin receptors.Trends Pharmacol. Sci. 11(Supp.), 25.

    Google Scholar 

  • Weiss, S. J., McKinney, J. S., and Putney, J. W., Jr. (1982) Receptor-mediated net breakdown of phosphatidylinositol 4,5-bisphosphate in parotid acinar cells.Biochem. J. 206, 555–560.

    PubMed  CAS  Google Scholar 

  • Willcocks, A. L., Strupish, J., Irvine, R. F., and Nahorski, S. R. (1989) Inositol 1:2cyclic,4,5-trisphosphate is only a weak agonist at inositol 1,4,5-trisphosphate receptors.Biochem. J. 267, 297–300.

    Google Scholar 

  • Willems, P. H. G. M., van Nooij, I. G. P., Haenen, H. E. M. G., and de Pont, J. J. H. H. M. (1987) Phorbol ester inhibits cholecystokinin octapeptide-induced amylase secretion and calcium mobilization, but is without effect on secretagogue-induced hydrolysis of phosphatidylinositol 4,5-bisphosphate in rabbit pancreatic acini.Biochim. Biophys. Acta 930, 230–236.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, D. B., Bross, T. E., Sherman, W. R., Berger, R. A., and Majerus, P. W. (1985a) Inositol cyclic phosphates are produced by cleavage of phosphatidylphosphoinositols (polyphosphoinositides) with purified sheep seminal vesicle phospholipase C enzymes.Proc. Natl. Acad. Sci. USA 82, 4013–4017.

    Article  CAS  Google Scholar 

  • Wilson, D. B., Connolly, T. M., Bross, T. E., Majerus, P. W., Sherman, W. R., Tyler, A. N., Rubin, L. J., and Brown, J. E. (1985b) Isolation and characterization of the inositol cyclic phosphate products of polyphosphoinositide cleavage by phospholipase C. Physiological effects in permeabilized platelets and Limulus photoreceptor cells.J. Biol. Chem. 260, 13496–13501.

    CAS  Google Scholar 

  • Womack, M. D., Hanley, M. R., and Jessel, T. M. (1985) Functional substance P receptors on a rat pancreatic acinar cell line.J. Neurosci. 5, 3370–3378.

    PubMed  CAS  Google Scholar 

  • Wong, N. S., Barker, C. J., Shears, S. B., Kirk, C. J., and Michell, R. H. (1988) Inositol 1:2(cyclic),4,5-trisphosphate is not a major product of inositol phospholipid metabolism in vasopressin-stimulated WRK1 cells.Biochem. J. 252, 1–5.

    PubMed  CAS  Google Scholar 

  • Wu, J. T., Gong, Q., Chou, R. H., and Wieland, S. J. (1991) Cat+-insensitive modulation of a K+ conductance by inositol phosphates.J. Biol. Chem. 266, 14893–14895.

    PubMed  CAS  Google Scholar 

  • Zhang, Y., Duszynski, J., Hreniuk, S., Waybill, M. M., and Lalloue, K. F. (1991) Regulation of plasma membrane permeability to calcium in primary cultures of rat hepatocytes.Cell Calcium 12, 559–575.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Putney, J.W. (1994). Receptors and the Inositol Phosphate-Calcium Signaling System. In: Buck, S.H. (eds) The Tachykinin Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0301-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0301-8_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6699-0

  • Online ISBN: 978-1-4612-0301-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics