Skip to main content

Ergodic Properties of Nonlinear Filtering Processes

  • Chapter
Spatial Stochastic Processes

Part of the book series: Progress in Probability ((PRPR,volume 19))

Abstract

Let x t be a temporally homogenous Markov process with state space S, called a system process in this paper. Suppose that we want to observe the sample path x t , but what we can observe is a stochastic process Y t of the form

$$ Y_t = \int_0^t {h\left( {x_s } \right)dt + N_t ,} $$
(0.1)

where h is a continous function on S and N t is a standard Brownian motion independent of x s . The filtering of the system based on the observation data Y t is defined by a conditional distribution

$$ \pi _t \left( A \right) = P\left( {x_t \in \left. A \right|\mathcal{G}_t } \right), $$
(0.2)

where A is a Borel subset of S and

$$ \mathcal{G}_t = \mathop \cap \limits_{\varepsilon > 0} \sigma \left( {Y_s ;s \leqslant t + \varepsilon } \right). $$
(0.3)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Fujisaki, G. Kallianpur and H. Kunita, Stochastic differential equations for the nonlinear filtering problem, Osaka J. Math. 9 (1972), pp. 19–40.

    MathSciNet  MATH  Google Scholar 

  2. R.Z. Hashiminsky, Ergodic properties of recurrent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations, Theor. Prob. Appl. 5 (1960), pp. 179–196.

    Article  Google Scholar 

  3. K. Ichihara and H. Kunita, A classification of the second order degenerate elliptic operators and its probabilistic characterization, Z. Wahrscheinlichkeitstheorie verw. Gebiete 30 (1974), pp. 235–254.

    Article  MathSciNet  MATH  Google Scholar 

  4. R.E. Kaiman and R.S. Bucy, New results in linear filtering and prediction theory, Trans. ASME Ser. D, J. Basic Eng. 83 (1961), pp. 95–108.

    Article  Google Scholar 

  5. H. Kunita, Asymptotic behavior of the nonlinear filtering errors of Markov processes, J. Multivariate Analysis 1 (1971), pp. 365–393.

    Article  MathSciNet  Google Scholar 

  6. H. Kunita, Stochastic partial differential equations connected with non-linear filtering, “Nonlinear filtering and stochastic control,” Lect. Notes Math., 1982, pp. 100–169.

    Google Scholar 

  7. H. Kunita, Stochastic Flows and Stochastic Differential Equations, in preparation.

    Google Scholar 

  8. T.G. Kurtz and D.L. Ocone, Unique characterization of conditional distributions in nonlinear filtering, The Annals of Probabilitiy 16 (1988), pp. 80–107.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Sh. Liptser and A.N. Shiryaev, “Statistics of Random Processes I,” Springer Verlag, New York, 1977.

    MATH  Google Scholar 

  10. P.A. Meyer, “Probability and Potentials,” Blaisdel, Waltham, Massachusetts, 1966.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kunita, H. (1991). Ergodic Properties of Nonlinear Filtering Processes. In: Alexander, K.S., Watkins, J.C. (eds) Spatial Stochastic Processes. Progress in Probability, vol 19. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0451-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0451-0_11

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6766-9

  • Online ISBN: 978-1-4612-0451-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics