Skip to main content

Mineral and Chemical Composition

  • Chapter
Sand and Sandstone

Abstract

Sandstones are mixtures of mineral grains and rock fragments coming from naturally disaggregated products of erosion of rocks of all kinds. The total variety of rock types in any given eroding watershed may be represented in the sediment product. Theoretically, therefore, the number of mineral species to be found in all sandstones is as large as the total number of mineral species known. Even a given specific sandstone might be expected to contain a large variety of minerals, since a glance at any geologic map will show the average watershed to have rocks with many kinds of minerals present. In fact the expectation proves to be untrue, for the abundant minerals of sandstones belong to a few major groups; many varieties of heavy minerals (most present in trace amounts) may be found, but the list is by no means very large. Obviously, the processes determining mineral composition of sandstones are more complex than simple mixing ones from source areas of different kinds. The discrepancy is great between observed and theoretically possible combinations of minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J.: Wear of Unsound Pebbles in River Headwaters. Science 203, 171–172 (1979).

    Google Scholar 

  • Adler, H.H. (Ed.): Formation of uranium ore deposits. Proc. Symposium Intern. Atomic Energy Agency, Vienna, 747 pp. (1974).

    Google Scholar 

  • Allen, J.R.L.: Petrology, Origin and Deposition of the Highest Lower Old Red Sandstone of Shropshire, England. Jour. Sed. Petrology 32, 657–697 (1962).

    Google Scholar 

  • Allen, P.: Lower Cretaceous Sourcelands and the North Atlantic. Nature 222, 657–658 (1969).

    Google Scholar 

  • Allen, P.: Wealden Detrital Tourmaline: Implications for Northwestern Europe. Geol. Soc. London Jour. 128, 273–294 (1972).

    Google Scholar 

  • Allen, P.; Dodson, M.H.; and Rex, D.C.: Potassium-argon dates and the origin of Wealden glauconites. Nature 202, 585–586 (1964).

    Google Scholar 

  • Allen, P.; Sutton, J.; and Watson, J.V.: Torridonian tourmaline-quartz pebbles and the Precambrian crust northwest of Britain. Geol. Soc. London Jour. 130, 85–91 (1974).

    Google Scholar 

  • Allen, R.C.; Gavish, E.; Friedman, G.M.; and Sanders, J.E.: Aragonite-cemented sandstone from outer continental shelf off Delaware Bay: submarine lithification mechanism yields product resembling beachrock. Jour. Sed. Petrology 39. 136–149 (1969).

    Google Scholar 

  • Andel, Tj.H. van: Sediments of the Rhone delta, pt. II, Sources and deposition of heavy minerals. Koninkl. Nederlandsch. Geol. Mijnb. Genoot. Geol. Ser. 15, 357–556 (1955).

    Google Scholar 

  • Aronson, J.L., and Tilton, G.R.: Probable Precambrian detrital zircons in New Caledonia and Southwest Pacific continental structure. Geol. Soc. America Bull. 82, 3449–3456 (1971).

    Google Scholar 

  • Arrhenius, G., and Bonatti, E.: Neptunism and volcanism in the ocean. In: Sears, M. (Ed.): Progress in oceanography, Vol. 3, pp. 7–22. London: Pergamon 1965.

    Google Scholar 

  • Baker, G.: Opal phytoliths in some Victorian soils and “red rain” residues. Australian Jour. Botany 7, 64–87 (1959).

    Google Scholar 

  • Baskin, Yehuda: A study of authigenic feldspars. Jour. Geology 64, 132–155 (1956).

    Google Scholar 

  • Basu, A.: Petrology of Holocene fluvial sand derived from plutonic source rocks: Implications to paleo-climatic interpretation. Jour. Sed. Petrology 46, 694–709 (1976).

    Google Scholar 

  • Basu, A.; Blanchard, D.P.; and Brannon, J.C.: Rare earth elements in the sedimentary cycle: A pilot study of the first leg. Sedimentology 29, 737–742 (1982).

    Google Scholar 

  • Basu, A.; Young, S.W.; Suttner, L.J.; James, W.C.; and Mack, G.H.: Re-evaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. Jour. Sed. Petrology 45, 873–882 (1975).

    Google Scholar 

  • Bates, T.F., and Comer, J.J.: Electron microscopy of clay surfaces. Clays and clay minerals: 3rd Nat’l. Conf. on Clays and Clay Minerals. Proc. U.S. Natl. Acad. Sci. Pub. 395, 1–25 (1955).

    Google Scholar 

  • Bell, D.L., and Goodell, H.G.: A comparative study of glauconite and the associated clay fraction in modern marine sediments. Sedimentology 9, 169202 (1967).

    Google Scholar 

  • Berner, R.A.: Iron sulfides formed from aqueous solution at low temperatures and atmospheric pressure. Jour. Geology 72, 293–306 (1964).

    Google Scholar 

  • Berner, R.A.: Early diagenesis, 241 pp. Princeton. New Jersey: Princeton Univ. Press 1980.

    Google Scholar 

  • Berner, R.A., and Holdren, G.R., Jr.: Mechanism of feldspar weathering, pt. II, Observation of feldspars from soils. Geochim. et Cosmochim. Acta 43, 1173–1186 (1979).

    Google Scholar 

  • Beutelspacher, H., and van der Marel, H.W.: Atlas of electron microscopy of clay minerals and their admixtures, 333 pp. Amsterdam: Elsevier 1968.

    Google Scholar 

  • Bhatia, M.R.: Plate tectonics and geochemical composition of sandstones. Jour. Geology 91, 611–627 (1983).

    Google Scholar 

  • Bhatia, M.R., and Taylor, S.R.: Trace-element geochemistry and sedimentary provinces: A study from the Tasman Geosyncline, Australia. Chem. Geology 33, 115–125(1981).

    Google Scholar 

  • Birks, L.S.: Electron probe microanalysis, 253 pp. New York: Interscience 1963.

    Google Scholar 

  • Biscaye, Pierre: Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and ocean. Geol. Soc. America Bull. 76, 803–832 (1965).

    Google Scholar 

  • Blatt, H.: Original characters of clastic quartz. Jour. Sed. Petrology 37, 401–424 (1967).

    Google Scholar 

  • Blatt, H., and Christie, J.M.: Undulatory extinction in quartz of igneous and metamorphic rocks and its significance in provenance studies of sedimentary rocks. Jour. Sed. Petrology 33, 559–579 (1963).

    Google Scholar 

  • Blatt, H.; Middleton, G.; and Murray, R.: Origin of sedimentary rocks, 2nd. Ed., 782 pp. Englewood Cliffs, New Jersey: Prentice-Hall 1980.

    Google Scholar 

  • Boles, J.R.: Active albitization of plagioclase, Gulf Coast Tertiary. Am. Jour. Sci. 282, 165–180 (1982).

    Google Scholar 

  • Borchert, H.: Ozeane Salzlagerstätten, 237 pp. Berlin: Gebr. Bornträger 1959.

    Google Scholar 

  • Bostick, N.: Microscopic measurement of the level of catagenesis of solid organic matter in sedimentary rocks to aid exploration for petroleum and to determine former burial temperatures—a review. In: Scholle, P.A., and Schluger, P.R. (Eds.): Aspects of diagenesis. Soc. Econ. Paleon. Mineral. Spec. Pub. 26, 17–44 (1979).

    Google Scholar 

  • Braitsch, O.: Salt deposits, their origin and composition, 297 pp. Berlin: Springer-Verlag 1971.

    Google Scholar 

  • Breger, I.A. (Ed.): Organic geochemistry, 658 pp. New York: Macmillan 1963.

    Google Scholar 

  • Briggs, L.I.; McCulloch, D.S.; and Moser, Frank: The hydraulic shape of sand particles. Jour. Sed. Petrology 32, 645–656 (1962).

    Google Scholar 

  • Brindley, G.W., and Brown, G. (Eds.): Crystal structures of clay minerals and their X-ray identification, 490 pp. London: Mineralog. Soc. Great Britain 1980.

    Google Scholar 

  • Brookins, D.G., and Voss, J.D.: Age dating of muscovites from Pennsylvanian sandstones near Wamego, Kansas. Am. Assoc. Petroleum Geologists Bull. 54, 353–356 (1970).

    Google Scholar 

  • Bull, P.A.; Culver, S.J.; and Gardner, R.: Chatter-mark trails as paleoenvironmental indicators. Geology 8, 318–322 (1980).

    Google Scholar 

  • Burst, J.F.: “Glauconite” pellets: Their mineral nature and application to stratigraphic problems. Am. Assoc. Petroleum Geologists Bull. 42, 310–327 (1958).

    Google Scholar 

  • Busenberg, E., and Clemency, C.V.: The dissolution kinetics of feldspars at 25°C and 1 atm. CO2 partial pressure. Geochim. et Cosmochim. Acta 40, 41–50 (1976).

    Google Scholar 

  • Callender, D.L., and Folk, R.L.: Idiomorphic zircon, key to volcanism in the lower Tertiary sands of central Texas. Am. Jour. Sci. 256, 257–269 (1958).

    Google Scholar 

  • Calvert, S.E.: Sedimentary geochemistry of silicon. In: Aston, S.R. (Ed.): Silicon geochemistry and biogeochemistry, pp. 143–186. New York: Academic Press 1983.

    Google Scholar 

  • Carroll, D.: Clay minerals: A guide to their X-ray identification, Geol. Soc. America Spec. Pub. 126, 80 pp. (1970).

    Google Scholar 

  • Charles, R.G., and Blatt, H.: Quartz, chert, and feldspars in modern fluvial muds and sands. Jour. Sed. Petrology 48, 427–432 (1978).

    Google Scholar 

  • Clarke, F.W.: The data of geochemistry, 5th Ed. U.S. Geol. Survey Bull. 770, 841 pp. (1924).

    Google Scholar 

  • Clayton, R.N.; Jackson, M.L.; and Sridhar, K.: Resistance of quartz silt to isotopic exchange under burial and intense weathering conditions. Geochim. et Cosmochim. Acta 42, 1517–1522 (1978).

    Google Scholar 

  • Clocchiatti, R.: Les inclusions vitreuses des cristaux de quartz. Soc. Géol. France Mem. 122, 95 pp. (1975).

    Google Scholar 

  • Cloud, P.E.: Physical limits of glauconite formation. Am. Assoc. Petroleum Geologists Bull. 39, 484–492 (1955).

    Google Scholar 

  • Columbo, Umberto, and Hobson, G.C. (Eds.): Advances in organic geochemistry, 488 pp. New York: Macmillan 1964.

    Google Scholar 

  • Cook, P.J.: Sedimentary phosphate deposits. In: Wolf, K.H. (Ed.): Handbook of strata-bound and stratiform ore deposits, Vol. 7, pp. 505–535. Amsterdam: Elsevier 1976.

    Google Scholar 

  • Coombs, D.S.; Ellis, A.J.; Fyfe, W.S.; and Gaylor, A.M.: The zeolite facies, with comments on the interpretation of hydrothermal syntheses. Geochim. et Cosmochim. Acta 17, 53–107 (1959).

    Google Scholar 

  • Correns, C.W., and Piller, H.: Mikroskopie der feinkörnigen Silikatminerale. In: Mikroskopie der Silikate, pt. I, Handbuch der Mikroskopie in der Technik, Vol. IV, pp. 699–780. Mikroskopie der Gesteine, 796 pp. Frankfurt: Umschau Verlag 1955.

    Google Scholar 

  • Crook, K.A.W.: Lithogenesis and geotectonics: the significance of compositional variations in flysch arenites (graywackes). In: Dott, R.H., and Shaver, R.H. (Eds.): Modern and ancient geosynclinal sedimentation. Soc. Econ. Paleon. Mineral. Spec. Pub. 19, 304–310 (1974).

    Google Scholar 

  • Curtis, C.D.: Stability of minerals in surface weathering reactions: a general thermochemical approach. Earth Surface Processes 1, 63–70 (1976).

    Google Scholar 

  • Davies, D.K., and Ethridge, F.G.: Sandstone composition and depositional environment. Am. Assoc. Petroleum Geologists Bull. 59, 239–264 (1975).

    Google Scholar 

  • Deer, W.A.; Howie, R.A.; and Zussman, J.: Rock-forming minerals, Vol. 1, Ortho-and ring silicates, 333 pp. New York: Wiley 1962.

    Google Scholar 

  • Deer, W.A.; Howie, R.A.; and Zussman, J.: Rock-forming minerals, Vol. 4, Framework silicates, 435 pp. New York: Wiley 1963.

    Google Scholar 

  • Degens, Egon: Geochemistry of sediments: a brief survey, 342 pp. Englewood Cliffs, New Jersey: Prentice-Hall 1965.

    Google Scholar 

  • Degens, E.T.; Williams, E.G.; and Keith M.L.: Environmental studies of Carboniferous sediments, pt. I, Geochemical criteria for differentiating marine and freshwater shales. Am. Assoc. Petroleum Geologists Bull. 41, 2427–2455 (1957).

    Google Scholar 

  • Degens, E.T.; Williams, E.G.; and Keith, M.L.: Environmental studies of Carboniferous sediments, pt. II, Application of geochemical criteria. Am. Assoc. Petroleum Geologists Bull. 42, 981–997 (1958).

    Google Scholar 

  • Dennen, W.H.: Impurities in quartz. Geol. Soc. America Bull. 75, 241–246 (1964).

    Google Scholar 

  • DePaolo, D.J., and Wasserburg, G.J.: Nd isotopic variations and petrogenetic models. Geophys. Research Letters 3, 249–252 (1976).

    Google Scholar 

  • Dietz, V.: Experiments on the influence of transport on shape and roundness of heavy minerals. In: Stability of heavy minerals, 44 pp. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung 1973.

    Google Scholar 

  • Dodson, M.H.; Rex, D.C.; Casey, R.; and Allen, P.: Glauconite dates from the Upper Jurassic and Lower Cretaceous. Geol. Soc. London Jour. 1205, 145–158 (1964).

    Google Scholar 

  • Doornkamp, J.C.: Tropical weathering and the ultramicroscopic characteristics of regolith quartz on Dartmoor. Geog. Annaler 56, 73–82 (1974).

    Google Scholar 

  • Doyle, L.J.; Carder, K.L.; and Steward, R.G.: The hydraulic equivalence of mica. Jour. Sed. Petrology 53, 643–648 (1983).

    Google Scholar 

  • Doyle, L.J.; Cleary, W.J.; and Pilkey, O.H.: Mica: Its use in determining shelf-depositional regimes. Marine Geol. 6, 381–389 (1968).

    Google Scholar 

  • Eglinton, G., and Murphy, M.T.J. (Eds.): Organic geochemistry, 720 pp. Berlin—Heidelberg—New York: Springer-Verlag 1969.

    Google Scholar 

  • Ethridge, F.G.: Petrology, transport, and environment in isochronous upper Devonian sandstone and siltstone units, New York. Jour. Sed. Petrology 47, 53–65 (1977).

    Google Scholar 

  • Evernden, J.F.; Curtis, G.H.; Obradovich, J.; and Kistler, R.W.: On the evaluation of glauconite and illite for dating sedimentary rocks. Geochim. et Cosmochim. Acta 23, 78–99 (1961).

    Google Scholar 

  • Farmer, V.C., and Russell, J.D.: The infra-red spectra of layer silicates. Spectrochim. Acta 20, 1149–1173 (1964).

    Google Scholar 

  • Faure, G.: Principles of isotope geology, 464 pp. New York: Wiley 1977.

    Google Scholar 

  • Feth, J.H.; Roberson, C.E.; and Polzer, W.L.: Sources of mineral constituents in water from granitic rocks, Sierra Nevada, California and Nevada, 70 pp. U.S. Geol. Survey Water-Supply Paper 1535-I (1964).

    Google Scholar 

  • Field, M.E., and Pilkey, O.H.: Feldspar in Atlantic continental margin sands off the southeastern United States. Geol. Soc. America Bull. 80, 2097–2102 (1969).

    Google Scholar 

  • Folk, R.L., and Weaver, C. E.: A study of the texture and composition of chert. Am. Jour. Sci. 250, 498–510 (1952).

    Google Scholar 

  • Force, E.R.: The provenance of rutile. Jour. Sed. Petrology 50, 485–488 (1980).

    Google Scholar 

  • Franzinelli, E., and Potter, P.E.: Petrology, chemistry and texture of modern river sands, Amazon River system. Jour. Geology 91. 23–39 (1983).

    Google Scholar 

  • Friedman, G.M.: Identification of carbonate minerals by staining methods. Jour. Sed. Petrology 29, 87–97 (1959).

    Google Scholar 

  • Frondel, C.: Dana’s system of mineralogy, 7th Ed., 334 pp. New York: Wiley 1962.

    Google Scholar 

  • Frye, J.C., and Swineford, A.: Silicified rock in the Ogallala formation. Kansas Geol. Survey Bull. 64, pt. II, 33–76 (1946).

    Google Scholar 

  • Füchtbauer, H.: Sedimentpetrographische Untersuchungen in der älteren Molasse nördlich der Alpen. Eclogae geol. Helvetiae 57. 157–298 (1964).

    Google Scholar 

  • Füchtbauer, H.: Influence of different types of diagenesis on sandstone porosity. Proc. 7th World Petroleum Cong., 353–369 (1967).

    Google Scholar 

  • Füchtbauer, H.: Sediments and sedimentary rocks I. Pt. II, 464 pp. New York: Wiley-Halsted Press 1974.

    Google Scholar 

  • Galliher, E.W.: Biotite—glauconite transformation and associated minerals. In: Recent marine sediments, pp. 513–515. Tulsa: Am. Assoc. Petroleum Geologists 1939.

    Google Scholar 

  • Garrets, R.M., Christ, C.L.: Solutions, minerals, and equilibria, 435 pp. New York: Harper and Row 1965.

    Google Scholar 

  • Garrets, R.M., and Mackenzie, F.T.: Origin of the chemical compositions of some springs and lakes. In: Equilibrium concepts in natural water systems. American Chemical Society Advances in Chemistry Ser. 67, 222–242 (1967).

    Google Scholar 

  • Garrels, R.M., and Mackenzie, F.T.: Evolution of Sedimentary rocks, 397 pp. New York: W.W. Norton and Co. 1971.

    Google Scholar 

  • Garrels, R.M.; Mackenzie, F.T.; and Siever, R.: Sedimentary cycling in relation to the history of the continents and oceans. In: Robertson, E.D. (Ed.): The nature of the solid earth, pp. 93–121. New York: McGraw-Hill 1971.

    Google Scholar 

  • Gebauer, D., and Grünenfelder, M.: U—Pb systematics of detrital zircons from some unmetamorphosed to slightly metamorphosed sediments of Central Europe. Contrib. Mineral. Petrol. 65, 2937 (1977).

    Google Scholar 

  • Giles, R.T., and Pilkey, O.H.: Atlantic beach and dune sediments of the southern United States. Jour. Sed. Petrology 35, 900–910 (1965).

    Google Scholar 

  • Gilligan, A.: The petrography of the Millstone Grit of Yorkshire. Geol. Soc. London Quart. Jour. 75, 251–294 (1920).

    Google Scholar 

  • Glass, H.D.; Potter, P.E.; and Siever, R.: Clay mineralogy of some basal Pennsylvanian sandstones, clays and shales. Am. Assoc. Petroleum Geologists Bull. 40, 750–754 (1957).

    Google Scholar 

  • Goldberg, E.D., and Griffin, J.J.: Sedimentation rates and mineralogy in the South Atlantic. Jour. Geophys. Research 69, 4293–4309 (1964).

    Google Scholar 

  • Goldich, S.S.: A study in rock weathering. Jour. Geology 46, 17–58 (1938).

    Google Scholar 

  • Goldschmidt, V.M.: In: Muir, A. (Ed.): Geochemis-try, 730 pp. Oxford: Oxford Univ. Press 1954.

    Google Scholar 

  • Goldsmith, J.R., and Graf, D.L.: Subsolidus relations in the system CaCO3—MgCO3—MnCO3. Jour. Geology 68, 324–335 (1960).

    Google Scholar 

  • Goldsmith, J.R.; Graf, D.L.; Witters, Juanita; and Northrop, D.A.: Studies in the system CaCO3MgCO3—MnCO3—FeCO3. Jour. Geology 70, 659–688 (1962).

    Google Scholar 

  • Graf, D.L.: Carbonate mineralogy, carbonate sediments, pt. I. Geochemistry of carbonate sediments and sedimentary carbonate rocks. Illinois Geol. Survey Circ. 297, 39 pp. (1960).

    Google Scholar 

  • Griffin, J.J.; Windom, H.; and Goldberg, E.D.: The distribution of clay minerals in the world ocean. Deep-Sea Res. 15, 433–459 (1968).

    Google Scholar 

  • Grim, R.E.: Clay mineralogy, 2nd Ed., 596 pp. New York: McGraw-Hill 1968.

    Google Scholar 

  • Grimm, W.D.: Stepwise heavy mineral weathering in the residual quartz gravel, Bavarian Molasse (Germany). In: Stability of heavy minerals, 125 pp. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung 1973.

    Google Scholar 

  • Hallam, A.: Depositional environment of British Liassic ironstones considered in the context of their facies relationships. Nature 209, 1306–1307 (1966).

    Google Scholar 

  • Hallam, A.: Siderite-and calcite-bearing concretionary nodules in the Lias of Yorkshire. Geol. Mag. [Great Britain] 104, 222–227 (1967).

    Google Scholar 

  • Hand, B.M.: Differentiation of beach and dune sands, using settling velocities of light and heavy minerals. Jour. Sed. Petrology 37, 514–520 (1967).

    Google Scholar 

  • Hanor, J.S.: Regional control and zoning of barite in eastern North America. Econ. Geology 62, 870 (1967).

    Google Scholar 

  • Harder, H., and Menschel, G.: Quarzbildungen am Meeresboden. Die Naturwissenschaften 54, 561 (1967).

    Google Scholar 

  • Hardie, L.A.: The gypsum-anhydrite equilibrium at one atmosphere pressure. Am. Mineralogist 52, 171–200 (1967).

    Google Scholar 

  • Hay, R.L.: Zeolites and zeolite reactions in sedimentary rocks. Geol. Soc. America Spec. Paper 85, 130 pp. (1966).

    Google Scholar 

  • Hayes, J.R.: Quartz and feldspar content in South Platte, Platte and Missouri river sands. Jour. Sed. Petrology 32, 793–800 (1962).

    Google Scholar 

  • Heim, D.: Über die Feldspäte im Germanischen Buntsandstein, ihre Korngrössenabhängigkeit, Verbreitung und paläogeographische Bedeutung. Geol. Rundschau 63, 943–970 (1974).

    Google Scholar 

  • Hemley, J.J., and Jones, W.R.: Chemical aspects of hydrothermal alteration with emphasis on hydrogen metasomatism. Econ. Geology 59, 538–569 (1964).

    Google Scholar 

  • Hirst, D.M., and Nicholls, G.D.: Techniques in sedimentary geochemistry, pt. I, Separation of the detrital and non-detrital fractions of limestones. Jour. Sed. Petrology 28, 468–481 (1958).

    Google Scholar 

  • Holdren, G.R., Jr., and Berner, R.A.: Mechanism of feldspar weathering—I. Experimental studies. Geochim. et Cosmochim. Acta 43, 1161–1171 (1979).

    Google Scholar 

  • Holland, H.D.: The chemical evolution of the atmosphere and oceans, 582 pp. New York: WileyInterscience 1984.

    Google Scholar 

  • Horowitz, Alan, and Potter, P.E.: Introductory petrography of fossils, 325 pp. Berlin-HeidelbergNew York: Springer 1971.

    Google Scholar 

  • Hsu, K.Jinghwa: Texture and mineralogy of the Recent sands of the Gulf Coast. Jour. Sed. Petrology 30, 380–403 (1960).

    Google Scholar 

  • Hubert, J.F.: Petrology of the Fountain and Lyons Formations, Front Range, Colorado. Colorado School Mines Quart. 55, no. 1, 1–242 (1960).

    Google Scholar 

  • Hubert, J.F., and Neal, W.F.: Mineral composition and dispersal patterns of deep-sea sands in the western North Atlantic petrologic province. Geol. Soc. America Bull. 78, 749–772 (1967).

    Google Scholar 

  • Hunt, J.M.: Petroleum geochemistry and geology, 617 pp. San Francisco: W.H. Freeman 1979.

    Google Scholar 

  • Hunter, R.E.: The petrography of some Illinois Pleistocene and Recent sands. Sedimentary Geology 1, 57–75 (1967).

    Google Scholar 

  • Hurley, P.M.; Hunt, J.M.; Pinson, W.H., Jr.; and Fairbairn, H.W.: K-Ar age values on the clay fractions in dated shales. Geochim. et Cosmochim Acta 27, 279–284 (1963).

    Google Scholar 

  • lijima, A.: Geological occurrences of zeolite in marine environments. In: Sand, L.B., and Mumpton, F.J. (Eds.): Natural zeolites: Occurrence, properties, use, pp. 175–198. New York: Pergamon Press 1978.

    Google Scholar 

  • Ingersoll, R.V.; Bullard, T.F.; Ford, R.L.; Grimm, J.P.; Pickle, J.D.; and Sares, S.W.: The effect of grain size on detrital modes: a test of the GazziDickinson point-counting method. Jour. Sed. Petrology 54. 103–116 (1984).

    Google Scholar 

  • James, W.C.; Mack, G.H.; and Suttner, L.J.: Relative alteration of microcline and sodic plagioclase in semi-arid and humid climates. Jour. Sed. Petrology 51, 151–164 (1981).

    Google Scholar 

  • Johns, W.D.; Grim, R.E.; and Bradley, W.F.: Quantitative estimations of clay minerals. Jour. Sed. Petrology 24, 242–251 (1954).

    Google Scholar 

  • Jones, J.B., and Segnit, E.R.: The nature of opal—I. Nomenclature and constituent phases. Geol. Soc. Australia Jour. 18, 56–68 (1971).

    Google Scholar 

  • Judd, J.B.; Smith, W.C.; and Pilkey, O.H.: The environmental significance of iron-stained quartz grains on the southeastern United States Atlantic shelf. Marine Geol. 8, 355–362 (1970).

    Google Scholar 

  • Kastner, M., and Siever, R.: Low temperature feldspars in sedimentary rocks. Am. Jour. Sci. 279, 435–479 (1979).

    Google Scholar 

  • Kelling, G.; Sheng, H.; and Stanley, D.J.: Mineralogic composition of sand-sized sediment on the outer margin off the Mid-Atlantic States: assessment of the influence of the ancestral Hudson and other fluvial systems. Geol. Soc. America Bull. 86, 853–862 (1975).

    Google Scholar 

  • Kinsman, D.J.J.: The Recent carbonate sediments near Halat el Bahrani Trucial Coast, Persian Gulf. In: Deltaic and shallow marine deposits. Developments in Sedimentology 1, 185–192 (1964).

    Google Scholar 

  • Kinsman, D.J.J.: Modes of formation, sedimentary associations, and diagnostic features of shallow-water and supratidal evaporites. Am. Assoc. Petroleum Geologists Bull. 53, 830–840 (1969).

    Google Scholar 

  • Kolodny, Y.: Phosphorites. In: Emiliani, C. (Ed.): The sea, Vol. 7: The oceanic lithosphere, pp. 981–1023. New York: John Wiley and Sons 1981.

    Google Scholar 

  • Krauskopf, K.: Introduction to geochemistry, 2nd Ed., 617 pp. New York: McGraw-Hill 1979.

    Google Scholar 

  • Krinsley, D.H., and McCoy, F.W.: Significance and origin of surface textures on broken sand grains in deep-sea sediments. Sedimentology 24, 857–862 (1977).

    Google Scholar 

  • Krinsley, D.H., and Tovey, N.K.: Cathodoluminescence in quartz and grains. Scanning Electron Microscopy 1, 887–894 (1978).

    Google Scholar 

  • Krynine, P.D.: Petrology and genesis of the Third Bradford Sand. Pennsylvania State College Bull. 29, 134 pp. (1940).

    Google Scholar 

  • Krynine, P.D.: Petrographic studies of variations in cementing material in the Oriskany sand. Proc. 10th Pennsylvania Min. Ind. Conf., Pennsylvania State College Bull. 33, 108–116 (1941).

    Google Scholar 

  • Krynine, P.D.: The tourmaline group in sediments. Jour. Geology 54, 65–87 (1946).

    Google Scholar 

  • Krynine, P.D.: The megascopic study and field classification of sedimentary rocks. Jour. Geology 56. 130–165 (1948).

    Google Scholar 

  • Land, L.S., and Dutton, S.P.: Cementation of a Pennsylvanian deltaic sandstone: isotope data. Jour. Sed. Petrology 48, 1167–1176 (1978).

    Google Scholar 

  • Lee, H.L., and Peacor, D.R.: Intralayer transitions in phyllosilicates of Martinsburg shale. Nature 303, 608–609 (1983).

    Google Scholar 

  • Leith, C.K., and Mead, W.J.: Metamorphic geology. 337 pp. New York: Henry Holt 1915.

    Google Scholar 

  • Le Ribault, L.: L’exoscopie des quartz, 150 pp. Paris: Masson 1977.

    Google Scholar 

  • Lerman, A.: Boron in clays and estimation of paleosalinities. Sedimentology 6, 267–286 (1966).

    Google Scholar 

  • Lipson, J.: Potassium—argon dating of sedimentary rocks. Geol. Soc. America Bull. 69, 137–150 (1958).

    Google Scholar 

  • Loughnan, F.C.: Chemical weathering of the silicate minerals, 154 pp. New York: Elsevier (1969).

    Google Scholar 

  • Lovell, J.P.B.: Tyee formation: a study of proximality in turbidites. Jour. Sed. Petrology 39. 935–953 (1969).

    Google Scholar 

  • Lucas, J.; Chaabani, F.; Prevot, L.; El Mountassir, M.; Menor, E.; Staman, G.; Gündogdu, N.; and Doubinger, J.: Studies on phosphorite deposits. Sci. Géol. Bull. (Strasbourg) 32. 105 pp. (1979).

    Google Scholar 

  • Lugmair, G.W.: Sm—Nd ages: A new dating method (abs.). Meteoritics 9, pp. 369 (1974).

    Google Scholar 

  • Lugmair, G.W., and Scheinin, N.B.: Sm—Nd systematics of the Stannern meteorite. Meteoritics 10, 447–448 (1975).

    Google Scholar 

  • Mack, G.H.: The survivability of labile light mineral grains in fluvial, aeolien, and littoral environments; the Permian Cutler-Cedar Mesa formations Moab Utah. Sedimentology 25, 587–603 (1978).

    Google Scholar 

  • Mackenzie, F.T., and Garrels, R.M.: Silicates: reac-tivity with sea water. Science 150. 57–58 (1965).

    Google Scholar 

  • Mackenzie, F.T., and Gees, R.: Quartz synthesis at Earth surface conditions. Science 173, 533–534 (1971).

    Google Scholar 

  • Mackie, W.: The sands and sandstones of Eastern Moray. Edinburgh Geol. Soc. Trans. 7, 148–172 (1896).

    Google Scholar 

  • Majewske, Otto P.: Recognition of invertebrate fossil fragments in rocks and thin sections, 101 pp. Leiden: Brill 1971.

    Google Scholar 

  • Manskaya, S.M.; and Drozdova, T.V.; Shapiro, L.; and Breger, I.A. (Trans. and Eds.): Geochemistry of organic substances. 345 pp. London: Pergamon 1968.

    Google Scholar 

  • Martens, J.H.C.: Beach sands of Quebec and Labrador. Field Museum Nat. History Pub. 260 (Geol. Series) 1929.

    Google Scholar 

  • Matsumoto, R., and Iijima, A.: Origin and diagenetic evolution of Ca—Mg—Fe carbonates in some coalfields of Japan. Sedimentology 28, 239–259 (1981).

    Google Scholar 

  • Maynard, J.B.: Geochemistry of sedimentary ore deposits, 305 pp. Berlin—Heidelberg—New York: Springer-Verlag 1983.

    Google Scholar 

  • Maynard, J.B.; Valloni, R.; and Yu, H.S.: Composition of modern deep-sea sands from arc-related basins. In: Leggett, J. (Ed.): Trench and fore-arc sedimentation. Geol. Soc. London, 551–561 (1982).

    Google Scholar 

  • McBride, E.F.: Significance of color in red, green. purple, olive, brown, and gray beds of Difunta Group, northeastern Mexico. Jour. Sed. Petrology 44, 760–773 (1974).

    Google Scholar 

  • McCullough, M.T., and Wasserburg, G.J.: Sm—Nd and Rb—Sr chronology of continental crust formation. Science 200, 1003–1011 (1978).

    Google Scholar 

  • McLennon, S.M.; Nance, W.B.; and Taylor, S.R.: Rare earth element—thorium correlations in sedimentary rocks and the composition of the continental crust. Geochim. et Cosmochim. Acta 44, 1833–1839 (1980).

    Google Scholar 

  • McMaster, R.L., and Garrison, L.: Mineralogy and origin of southern New England shelf sediments. Jour. Sed. Petrology 36, 1131–1142 (1966).

    Google Scholar 

  • Midgley, H.G.: Chalcedony and flint. Geol. Mag. [Great Britain] 88, 179–184 (1951).

    Google Scholar 

  • Millot, G.: Geologie des argiles, 499 pp. Paris: Masson 1964.

    Google Scholar 

  • Milner, H.B.: Sedimentary petrography, Vol. II, Principles and applications, 715 pp. New York: Macmillan 1962.

    Google Scholar 

  • Mitchell, W.A.: Heavy minerals. In: Gieseking, J.E. (Ed.): Soil components, Vol. 2: Inorganic components, pp. 450–469. New York: Springer-Verlag 1975.

    Google Scholar 

  • Moss, A.J.: Initial fluviatile fragmentation of granitic quartz. Jour. Sed. Petrology 42, 905–916 (1972).

    Google Scholar 

  • Munson, R.A., and Sheppard, R.A.: National zeolites: Their properties, occurrences, and uses. Minerals Sci. Eng. 6, 19–30 (1974).

    Google Scholar 

  • Nanz, R.H., Jr.: Genesis of Oligocene sandstone reservoir, Seeligson field, Jim Wells and Kleberg Counties. Texas. Am. Assoc. Petroleum Geologists Bull. 38, 96–117 (1954).

    Google Scholar 

  • Nickel, E.: Experimental dissolution of light and heavy minerals in comparison with weathering and intrastratal solution. In: Stability of heavy minerals, 68 pp. Stuttgart: Schweizerbart’sche Veriagsbuchhandlung 1973.

    Google Scholar 

  • Nieter, W.M., and Krinsley, D.H.: The production and recognition of aeolian features on sand grains by silt abrasion. Sedimentology 23, 713–720 (1976).

    Google Scholar 

  • Odom, I.E.; Doe, T.W.; and Dott, R.H., Jr.: Nature of feldspar—grain size relations in some quartz-rich sandstones. Jour. Sed. Petrology 46, 862–870 (1976).

    Google Scholar 

  • Okada, H.: Non-graywacke “turbidite” sandstones in the Welsh geosyncline. Sedimentology 7, 211–232 (1966).

    Google Scholar 

  • Oilier, C.: Weathering, 304 p. New York: Elsevier 1969.

    Google Scholar 

  • O’Nions, R.K.; Evensen, N.M.; and Hamilton, P.J.: Geochemical modeling of mantle differentiation and crustal growth. Jour. Geophys. Research 84, 6091–6101 (1979).

    Google Scholar 

  • Orville, P.: Alkali ion exchange between vapor and feldspar phases. Am. Jour. Sci. 261, 201–237 (1963).

    Google Scholar 

  • Packham, G.H., and Crook, K.A.W.: The principle of diagenetic facies and some of its implications. Jour. Geology 68, 392–407 (1960).

    Google Scholar 

  • Parfenoff, A.; Pomerol, C.; and Tourenq, J.: Les minéraux en grains, 571 pp. Paris: Masson 1970.

    Google Scholar 

  • Peterman, Z.E., Coleman, R.G., and Bunker, C.M.: Provenance of Eocene graywackes of the Fluornoy Formation near Agness, Oregon—a geochemical approach. Geology 9, 81–86, (1981).

    Google Scholar 

  • Petrovie, R.: Rate control in feldspar dissolution—II. The protective effect of precipitates. Geochim. et Cosmochim. Acta 40, 1509–1521 (1976).

    Google Scholar 

  • Petrovié, R.; Berner, R.A.; and Goldhaber, M.B.: Rate control in dissolution of alkali feldspars—I. Study of residual feldspar grains by X-ray photoelectron spectroscopy. Geochim. et Cosmochim. Acta 40, 537–548 (1976).

    Google Scholar 

  • Pettijohn, F.J.: Chemical composition of sandstones—excluding carbonate and volcanic sands. U.S. Geol. Survey Prof. Paper 400-S, 19 pp. (1963).

    Google Scholar 

  • Pettijohn, F.J. Sedimentary rocks, 3rd Ed., 628 pp. New York: Harper and Row 1975.

    Google Scholar 

  • Pettijohn, F.J., and Lundahl, A.C.: Shape and roundness of Lake Erie beach sands. Jour. Sed. Petrology 13, 69–78 (1943).

    Google Scholar 

  • Plas, L. van der: The identification of detrital feldspars, 305 pp. Amsterdam: Elsevier 1966.

    Google Scholar 

  • Poldervaart, A.: Zircons in rocks, pt. I, Sedimentary rocks. Am. Jour. Sci. 253, 433–461 (1955).

    Google Scholar 

  • Polevaya, N.I.; Murina, G.A.; and Kozakov, G.A.: Utilization of glauconite in absolute dating. N.Y. Acad. Sci. Ann. 91, 298–310 (1961).

    Google Scholar 

  • Porrenga, D.H.: Glauconite and chamosite as depth indicators in the marine environment. Marine Geol. 5, 495–501 (1967).

    Google Scholar 

  • Potter, P.E.: Petrology and chemistry of modern big river sands. Jour. Geology 86, 423–449 (1978).

    Google Scholar 

  • Potter, P.E.; Maynard, J.B.; and Pryor, W.A.: Sedimentology of shale, 306 pp. Berlin–HeidelbergNew York: Springer-Verlag 1980.

    Google Scholar 

  • Potter, P.E., and Pryor, W.A.: Dispersal centers of Paleozoic and later elastics of the upper Mississippi valley and adjacent areas. Geol. Soc. America Bull. 72, 1195–1250 (1961).

    Google Scholar 

  • Powers, L.S.; Brueckner, H.K.; and Krinsley, D.H.: Rb–Sr provenance ages from weathered and stream transported quartz grains from the Harney Peak granite, Black Hills, South Dakota. Geochim. et Cosmochim. Acta 43, 137–146 (1979).

    Google Scholar 

  • Pryor, W.A.: Biogenic sedimentation and alteration of argillaceous sediments in shallow-marine environments. Geol. Soc. America Bull. 86, 1244–1254 (1975).

    Google Scholar 

  • Pryor, W.A., and Hester, N.C.: X-ray diffraction analysis of heavy minerals. Jour. Sed. Petrology 39, 1384–1389 (1969).

    Google Scholar 

  • Pye, K., and Krinsley, D.H.: Interlayered clay stacks in Jurassic shales. Nature 304, 618–620 (1983).

    Google Scholar 

  • Rehmer, J.A., and Hepburn, J.C.: Quartz sand surface textural evidence for a glacial origin of the Squantum “Tillite,” Boston Basin, Massachusetts. Geology 2, 413–415 (1974).

    Google Scholar 

  • Rimsaite, J.: Optical heterogeneity of feldspars observed in diverse Canadian rocks. Schweiz. Min. Petrogr. Mitt. 47, 61–76 (1967).

    Google Scholar 

  • Rittenhouse, G.A.: Transportation and deposition of heavy minerals. Geol. Soc. America Bull. 54, 1725–1780 (1943).

    Google Scholar 

  • Robinson, A., and Spooner, E.T.C.: Source of the detrital components of uraniferous conglomerates, Quirke Ore Zone, Elliot Lake, Ontario, Canada. Nature 299, 622–624 (1982).

    Google Scholar 

  • Ronov, A.B.; Mikhailovskaya, M.S.; and Solodkova, I.I.: Evolution of the chemical and mineralogical composition of arenaceous rocks. In: Chemistry of the earth’s crust, Vol. 1. U.S.S.R. Acad. Sci., Israel Progr. Sci., Translations, 1966, 212–262 (1963).

    Google Scholar 

  • Russell, R.D.: Mineral composition of Mississippi River sands. Geol. Soc. America Bull. 48, 1307–1348 (1937).

    Google Scholar 

  • Rutten, M.G.: The geological aspects of the origin of life on earth, 146 pp. Amsterdam: Elsevier 1962.

    Google Scholar 

  • Sabins, F.F., Jr.: Grains of detrital, secondary, and primary dolomite from Cretaceous strata of the western interior. Geol. Soc. America Bull. 73, 1183–1196 (1962).

    Google Scholar 

  • Sand, L.B., and Mumpton, F.J. (Eds.): Natural zeolites: occurrence, properties, use, 576 pp. New York: Pergamon Press 1978.

    Google Scholar 

  • Savin, S.M., and Epstein, Samuel: The oxygen isotopic compositions of coarse grained sedimentary rocks and minerals. Geochim. et Cosmochim. Acta 34, 323–329 (1970).

    Google Scholar 

  • Scholle, P.A.: A color illustrated guide to carbonate rock constituents, textures, cements, and porosities. Am. Assoc. Petroleum Geologists Mem. 27, 241 pp. (1978).

    Google Scholar 

  • Seed, D.P.: The formation of vermicular pellets in New Zealand glauconites. Am. Mineralogist 50, 1097–1106 (1965).

    Google Scholar 

  • Shearman, D.J.: Evaporites of coastal sabkhas. In: Dean, W.E., and Schreiber, B.C. (Eds.): Marine evaporites. S.E.P.M. Short Course 4, 6–42 (1978).

    Google Scholar 

  • Shiki, T.: Studies on sandstone in the Maizuru Zone, Southwest Japan, pt. I, Importance of some relations between mineral composition and grain size. Mem. Coll. Sci., Univ. Kyoto, Ser. B, 29, 291–324 (1959).

    Google Scholar 

  • Shimp, N.F.; Witter, J.; Potter, P.E.; and Schleicher, J.A.: Distinguishing marine and freshwater muds. Jour. Geology 77, 566–580 (1969).

    Google Scholar 

  • Sibley, D.F., and Blatt, H.: Intergranular pressure solution and cementation of the Tuscarora orthoquartzite. Jour. Sed. Petrology 46, 881–896 (1976).

    Google Scholar 

  • Siever, R.: The silica budget in the sedimentary cycle. Am. Mineralogist 42, 821–841 (1957).

    Google Scholar 

  • Siever, R.: Establishment of equilibrium between clays and sea water. Earth Planet. Sci. Letters 5, 106–110 (1968).

    Google Scholar 

  • Siever, R., and Kastner, Miriam: Mineralogy and petrology of some Mid-Atlantic Ridge sediments. Jour. Marine Research 25, 263–278 (1967).

    Google Scholar 

  • Siever, R., and Woodford, N.: Sorption of silica by clay minerals. Geochim. et Cosmochim. Acta 37, 1851–1880 (1973).

    Google Scholar 

  • Siffert, Bernard: Quelques réactions de la silice en solution: la formation des argiles. Service Carte Géol. Alsace Lorraine Mémoires No. 21, 86 pp. (1962).

    Google Scholar 

  • Sippel, R.F.: Sandstone petrology, evidence from luminescence petrography. Jour. Sed. Petrology 38, 530–554 (1968).

    Google Scholar 

  • Smalley, I.J.; Krinsley, D.H.; Moon, C.F.; and Bentley, S.P.: Processes of quartz fracture in nature and the formation of clastic sediments. In: Pusch, R.; Easterling, K.; Lundberg, B.; and Stephansson, O. (Eds.): Mechanisms of deformation and fracture. pp. 112–121. Sweden: Lulea. 1978.

    Google Scholar 

  • Smith, J.V.: Feldspar minerals, Vols. 1–3. Berlin-New York: Springer-Verlag 1974.

    Google Scholar 

  • Smith, J.V., and Stenstrom, R.C.: Electron excited luminescence as a petrologic tool. Jour. Geology 73, 627–635 (1965).

    Google Scholar 

  • Stanley, K.O., and Faure, G.: Isotopic composition and sources of strontium in sandstone cements: the high plains sequence of Wyoming and Nebraska. Jour. Sed. Petrology 49, 45–54 (1979).

    Google Scholar 

  • Steiner, M.B.: Detrital remanent magnetization in hematite. Jour. Geophys. Research 88, 6523–6539 (1983).

    Google Scholar 

  • Strakov, N.M.: Principles of lithogenesis, Vol. I. 245 pp. New York: Consultants Bureau 1967.

    Google Scholar 

  • Stumpfl, E.: Erzmikroskopische Untersuchungen an Schwermineralien in Sanden. Geol. Jahrbuch 73. 685–724 (1958).

    Google Scholar 

  • Suttner, L.J., and Basu, A.: Structural state of detrital alkali feldspars. Sedimentology 24, 63–74 (1977).

    Google Scholar 

  • Sweatman, T.R., and Long, J.V.P.: Quantitative electron-probe microanalysis of rock-forming minerals. Jour. Petrology 10, 332–379 (1969).

    Google Scholar 

  • Swineford, A., and Franks, P.O.: Opal in the Ogallala formation. Kansas. In: Silica in sediments. Soc. Econ. Paleon. Mineral. Spec. Pub. 7, 111–120 (1959).

    Google Scholar 

  • Tardy, Y.; Bocquier, G.; Paquet, H.; and Millot, G.: Formation of clay from granite and its distribution in relation to climate and topography. Geoderma 10. 271–284 (1973).

    Google Scholar 

  • Tatsumoto, M., and Patterson, C.: Age studies of zircon and feldspar concentrates from the Franconia sandstone. Jour. Geology 72, 232–242 (1964).

    Google Scholar 

  • Taylor, J.H.: Petrology of the Northampton sand iroistone fomation. Geol. Survey Great Britain Mem., 111 pp. (1949).

    Google Scholar 

  • Tissot, B.P., and Welte, D.H.: Petroleum formation and occurrence, 538 pp. Berlin-Heidelberg-New York: Springer-Verlag 1978.

    Google Scholar 

  • Todd, T.W.: Paleoclimatology and the relative stability of feldspar minerals under atmospheric conditions. Jour. Sed. Petrology 38, 832–844 (1968).

    Google Scholar 

  • Tomita, Toru: Geologic significance of the color of granite zircon, and the discovery of the Precambrian in Japan. Kyushu Univ. Fac. Sci. Mem. 4, 135–161 (1954).

    Google Scholar 

  • Trevena, A.S., and Nash, W.P.: An electron microprobe study of detrital feldspar. Jour. Sed. Petrology 51, 137–150 (1981).

    Google Scholar 

  • Triplehorn, D.M.: Morphology, internal structure, and origin of glauconite pellets. Sedimentology 6, 247–266 (1966).

    Google Scholar 

  • Trowbridge, A.C., and Shepard, F.P.: Sedimentation in Massachusetts Bay. Jour. Sed. Petrology 2, 3–37 (1932).

    Google Scholar 

  • Turner, F.J., and Verhoogen, John: Igneous and metamorphic petrology, 694 pp. New York: McGraw Hill 1960.

    Google Scholar 

  • Turner, P., and Ixer, R.A.: Diagenetic development of unstable and stable magnetization in the St. Bees sandstone (Triassic) of northern England. Earth Planet. Sci. Letters 34, 113–124 (1977).

    Google Scholar 

  • Valloni, R., and Maynard, J.B.: Detrital modes of recent deep-sea sands and their relation to tectonic setting: A first approximation. Sedimentology 28, 75–83 (1981).

    Google Scholar 

  • Van Houten, F.B.: Cyclic sedimentation and the origin of analcime-rich Upper Triassic Lockatong formation, west-central New Jersey and adjacent Pennsylvania. Am. Jour. Sci. 260, 561–576 (1962).

    Google Scholar 

  • Van Houten, F.B.: Origin of red beds—a review: 1961–72. Ann. Rev. Earth Planet. Sci. 1, 39–61 (1973).

    Google Scholar 

  • Van Houten, F.B., and Battacharyya, D.P.: Phanerozoic oolitic ironstones—geologic record and facies model. Ann. Rev. Earth Planet. Sci. 10. 441–457 (1982).

    Google Scholar 

  • Van Houten, F.B., and Karasek, R.M.: Sedimento-logic framework of late Devonian oolitic iron formation, Shatti Valley, west-central Libya. Jour. Sed. Petrology 51, 415–427 (1981).

    Google Scholar 

  • Velde, B.: Clays and clay minerals in natural and synthetic systems, 218 pp. New York: Elsevier 1977.

    Google Scholar 

  • Walker, T.R.: Formation of red beds in modern and ancient deserts. Geol. Soc. America Bull. 78, 353–368 (1967).

    Google Scholar 

  • Walker, T.R.: Formation of red beds in moist tropical climates: A hypothesis. Geol. Soc. America Bull. 85, 633–638 (1974).

    Google Scholar 

  • Walker, T.R.; Larson, E.E.; and Hoblitt, R.P.: Nature and origin of hematite in the Moenkopi formation (Triassic), Colorado Plateau: A contribution to the origin of magnetism in red beds. Jour. Geophys. Research 86, 317–333 (1981).

    Google Scholar 

  • Walker, T.R.; Waugh, B.; and Crone, A.J.: Diagenesis in first-cycle desert alluvium of Cenozoic Age, southwestern United States and northwestern Mexico. Geol. Soc. America Bull. 89, 19–32 (1978).

    Google Scholar 

  • Warne, S.St.J.: A quick field or laboratory staining scheme for the differentiation of the major carbonate minerals. Jour. Sed. Petrology 32, 29–38 (1962).

    Google Scholar 

  • Webb, W.M., and Potter, P.E.: Petrology and geochemistry of modern sands derived from a volcanic terrain, western Chihuahua. Bol. Soc. Mexicana 32, 45–61 (1969).

    Google Scholar 

  • Wedepohl, K.H. (Ed.): Handbook of geochemistry, Vols. 1, 2. Berlin—Heidelberg—New York: Springer-Verlag 1969.

    Google Scholar 

  • Whetten, J.T.: Sediments from the lower Columbia River and origin of graywacke. Science 152, 1057–1058 (1966).

    Google Scholar 

  • Williams, Howell; Turner, F.J.; and Gilbert, C.M.: Petrography, 406 pp. San Francisco: W.H. Freeman and Co. 1954.

    Google Scholar 

  • Willman, H.B.: Feldspar in Illinois sands: a study in resources. Illinois Geol. Surv. Rept. Inv. 79, 87 pp. (1942).

    Google Scholar 

  • Wisniowiecki, M.J.; Van der Voo, R.; McCabe, C.; and Kelly, W.C.: A Pennsylvanian paleomagnetic pole from the mineralized late Cambrian Bonne-terre formation, southeast Missouri. Jour. Geophys. Research 88, 6540–6548 (1983).

    Google Scholar 

  • Wollast, R., and Mackenzie, F.T.: The global cycle of silica. In: Aston, S.R. (Ed.): Silicon geochemistry and biogeochemistry, pp. 39–76. New York: Academic Press 1983.

    Google Scholar 

  • Zimmerle, W.: Fossil heavy mineral concentrations. Geol. Rundschau 62, 536–548 (1973).

    Google Scholar 

  • Zimmerle, W.: The geotectonic significance of detrital brown spinel in sediments. Mitt. Geol.-Paläont. Inst. Univ. Hamburg 56, 337–360 (1984).

    Google Scholar 

  • Zvyagin, B.B., and Lyse, S. (Trans.): Electrondiffraction analysis of clay mineral structure (Translated from the Russian by S. Lyse), 364 pp. New York: Plenum Press 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pettijohn, F.J., Potter, P.E., Siever, R. (1987). Mineral and Chemical Composition. In: Sand and Sandstone. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1066-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1066-5_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96350-1

  • Online ISBN: 978-1-4612-1066-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics