Skip to main content

Elliptic Solutions to Difference Nonlinear Equations and Nested Bethe Ansatz Equations

  • Chapter
Calogero—Moser— Sutherland Models

Part of the book series: CRM Series in Mathematical Physics ((CRM))

Abstract

We outline an approach to a theory of various generalizations of the elliptic Calogero—Moser (CM) and Ruijsenaars—Schneider (RS) systems based on a special inverse problem for linear operators with elliptic coefficients. Hamiltonian theory of such systems is developed with the help of universal symplectic structure proposed by D. H. Phong and the author. Canonically conjugated variables for spin generalizations of the elliptic CM and RS systems are found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Airault, H. P. McKean, and J. Moser, Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem, Commun. Pure Appl. Math. 30 (1977), No. 1, 95–148.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. G. E. Arutyunov and S. A. Frolov, On the Hamiltonian structure of the spin Ruijsenaars-Schneider system, J. Phys. A 31 (1998), No. 18, 4203–4216, hep-th/9703119.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. F. Calogero, Exactly solvable one-dimensional many-body problems, Lett. Nuovo Cimento 13 (1975), No. 11, 411–416.

    Article  MathSciNet  Google Scholar 

  4. D. V. Chudnovsky and G. V. Chudnovsky, Pole expansions of nonlinear partial differential equations, Nuovo. Cimento 40B (1977), No. 2, 339–350.

    MathSciNet  ADS  Google Scholar 

  5. E. D’Hoker and D. H. Phong, Calogero-Moser systems in SU(n) Seiberg-Witten theory, Nucl. Phys. B 513 (1998), No. 1-2, 405–444, hep-th/970905.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. R. Donagi and E. Witten, Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys. B 460 (1996), No. 2, 299–334.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. B. Enriquez and V. N. Rubtsov, Hitchin systems, higher Gaudin operators and R-matrices, Math. Res. Lett. 3 (1996), No. 3, 343–357.

    MathSciNet  MATH  Google Scholar 

  8. M. Gaudin, Diagonalisation d’une classe d’hamiltoniens de spin, J. Phys. (Paris) 37 (1976), No. 10, 1089–1098.

    MathSciNet  Google Scholar 

  9. A. Gorsky and N. Nekrasov, Elliptic Calogero-Moser system from two-dimensional current algebra, hep-th/9401021.

    Google Scholar 

  10. A. Gorsky and N. Nekrasov, Hamiltonian systems of Calogero-type, and two-dimensional Yang-Mills theory, Nucl. Phys. B 414 (1994), No. 1-2, 213–238.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. N. Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987), No. 1, 91–114.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Kazhdan, B. Kostant, and S. Sternberg, Hamiltonian group actions and dynamical systems of Calogero type, Commun. Pure Appl. Math. 31 (1978), No. 4, 481–507.

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Krichever, O. Lipan, P. Wiegmann, and A. Zabrodin, Quantum integrable models and discrete classical Hirota equations, Commun. Math. Phys. 188 (1997), No. 2, 267–304.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. I. M. Krichever, Rational solutions of the Kadomtsev-Petviašhvili equation and integrable systems of N particles on a line, Funct. Anal. Appl. 12 (1978), No. 1, 59–61.

    MATH  Google Scholar 

  15. I. M. Krichever, Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles, Funct. Anal. Appl. 14 (1980), No. 4, 282–290.

    Article  MathSciNet  Google Scholar 

  16. I. M. Krichever, O. Babelon, E. Billey, and M. Talon, Spin generalization of the Caloger-Moser system and the matrix KP equation, Topics in Topology and Mathematical Physics (A. B. Sossinsky, ed.), Amer. Math. Soc. Transi. Ser. 2, Vol. 170, Amer. Math. Soc, Providence, RI, 1995, pp. 83–119, hep-th/9411160.

    Google Scholar 

  17. I. M. Krichever and D. H. Phong, Symplectic forms in the theory of solitons, hep-th/9708170.

    Google Scholar 

  18. I. M. Krichever and D. H. Phong, On the integrable geometry of soliton equations and N = 2 supersymmetric gauge theories, J. Differential Geom. 45 (1997), No. 2, 349–389.

    MathSciNet  MATH  Google Scholar 

  19. I. M. Krichever and A. Zabrodin, Spin generalization of the Ruijse-naars-Schneider model, non-Abelian 2D Toda chain and representations of Sklyanin algebra, Russian Math. Surveys 50 (1995), No. 6, 1101–1150, hep-th/9505039.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. J. Moser, Three integrable Hamiltonian systems connected to isospec-tral deformations, Adv. Math. 16 (1975), 197–220.

    Article  ADS  MATH  Google Scholar 

  21. N. Nekrasov, Holomorphic bundles and many-body systems, Commun. Math. Phys. 180 (1996), No. 3, 587–603.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. F. W. Nijhoff, O. Ragnisco, and V. B. Kuznetsov, Integrable time-discretization of the Ruijsenaars-Schneider model, Commun. Math. Phys. 176 (1996), No. 3, 681–700.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. S. P. Novikov and A. Veselov, Poisson brackets that are compatible with the algebraic geometry and the dynamics of the Korte-weg-de Vries equations on the set of finite-gap potentials, Siberian Math. J. 26 (1982), No. 2, 357–362.

    Google Scholar 

  24. M. A. Olshanetsky and A. M. Perelomov, Classical integrable finite-dimensional systems related to Lie algebras, Phys. Rep. 71 (1981), No. 5, 313–400.

    Article  MathSciNet  ADS  Google Scholar 

  25. A. M. Perelomov, Completely integrable classical systems connected with semisimple Lie algebras. III, Lett. Math. Phys. 1 (1975/77), No. 6, 531–534.

    Google Scholar 

  26. S. N. M. Ruijsenaars and H. Schneider, A new class of integrable systems and its relation to solitons, Ann. Phys. (NY) 170 (1986), No. 2, 370–405.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994), No. 2, 484–550.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Krichever, I. (2000). Elliptic Solutions to Difference Nonlinear Equations and Nested Bethe Ansatz Equations. In: van Diejen, J.F., Vinet, L. (eds) Calogero—Moser— Sutherland Models. CRM Series in Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1206-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1206-5_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7043-0

  • Online ISBN: 978-1-4612-1206-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics