Skip to main content

Regional Impacts of Climate Change and Elevated Carbon Dioxide on Forest Productivity

  • Chapter
Responses of Northern U.S. Forests to Environmental Change

Part of the book series: Ecological Studies ((ECOLSTUD,volume 139))

Abstract

Net primary production (NPP) is defined as the rate at which carbon (C) is accumulated by autotrophs and is expressed as the difference between gross photosynthesis and autotrophic respiration. NPP is the resource providing for the growth and reproduction of all heterotrophs on Earth; as a result, it determines the planet’s carrying capacity (Vitousek et al., 1986). For humans, terrestrial NPP is important because it is one determinant of the available food and wood supplies, and because it drives the rates of most other processes identified as “ecosystem services” provided by terrestrial systems (Costanza et al., 1997; Daily et al., 1997). Forests store 90% of the C in terrestrial vegetation (Graham et al., 1990), so fluxes of C between forest biomass, forest soils, and the atmosphere are key components of global and regional C budgets. In the northeastern U.S., forest production is especially important because nearly 70% of the land area in the region is forested (Lathrop and Bognar, 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber JD (1997) Why don’t we believe the models? Bull Ecol Soc Am 78(3): 232–233.

    Google Scholar 

  • Aber JD, Driscoll CT (1997) Effects of land use, climate variation and N deposition on N cycling and C storage in northern hardwood forests. Global Biogeochem Cycl 11:639–648.

    CAS  Google Scholar 

  • Aber JD, Ollinger SV, Federer CA, Reich PB, Goulden ML, Kicklighter DW, Melillo JM, Lathrop RG Jr. (1995) Predicting the effects of climate change on water yield and forest production in the northeastern US. Clim Res 5:207–222.

    Google Scholar 

  • Aber JD, Driscoll C, Federer CA, Lathrop R, Lovett G, Steudler P, Vogelmann J (1993a) A strategy for the regional analysis of the effects of physical and chemical climate change on biogeochemical cycles in northeastern (U.S.) forests. Ecol Model 67:37–47.

    Google Scholar 

  • Aber JD, Federer CA (1992) A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia 92:463–474.

    Google Scholar 

  • Aber JD, Magill A, Boone R, Melillo JM, Steudler P, Bowden R (1993b) Plant and soil responses to chronic nitrogen additions at the Harvard Forest, Massachusetts. Ecol Applic 3:156–166.

    Google Scholar 

  • Aber JD, Melillo JM, Nadelhoffer NJ, Pastor J, Boone RD (1991) Factors controlling nitrogen cycling and nitrogen saturation in northern temperate forest ecosystems. Ecol Applic 1:303–315.

    Google Scholar 

  • Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems. BioScience 39:378–386.

    Google Scholar 

  • Aber JD, Ollinger SV, Driscoll CT (1997) Modeling nitrogen saturation in forest ecosystems in response to land use and atmospheric deposition. Ecol Model 101:61–78.

    Google Scholar 

  • Aber JD, Reich PB, Goulden ML (1996) Extrapolating CO2 exchange to the canopy: a generalized model of photosynthesis validated by eddy correlation. Oecologia 106:257–265.

    Google Scholar 

  • Amthor JS (1991) Respiration in a future, higher CO2 world. Plant Cell Environ 14:13–20.

    CAS  Google Scholar 

  • Bailey SW, Driscoll CT, Hornbeck JW (1995) Acid-base chemistry and aluminum transport in an acidic watershed pond in New Hampshire. Biogeochem 28: 69–91.

    CAS  Google Scholar 

  • Bailey SW, Hornbeck JW, Driscoll CT, Gaudette HE (1996) Calcium imports and transport in a base-poor forest ecosystem as interpreted by Sr isotopes. Water Resour Res 32:707–719.

    CAS  Google Scholar 

  • Bazzaz FA (1990) The response of natural ecosystems to the rising global CO2 levels. Ann Rev Ecol Syst 21:167–176.

    Google Scholar 

  • Bazzaz FA, Bassow SL, Berntson GM, Thomas SC (1996) Elevated CO2 and terrestrial vegetation: Implications for and beyond the global carbon budget. In: Walker B, Steffen W (eds) Global Change and Terrestrial Ecosystems. Cambridge University Press, Cambridge, United Kingdom, pp 43–76.

    Google Scholar 

  • Bazzaz FA, Fajer ED (1992) Plant life in a CO2-rich world. Sci Am (Jan):68–74.

    Google Scholar 

  • Beltz RC, Cost ND, Kingsley NP, Peters JR (1992) Timber Volume Distribution Maps for the Eastern United States. United States Department of Agriculture (USDA) Forest Service, Washington, DC, Gen Tech Rep WO-60.

    Google Scholar 

  • Bolker BM, Pacala SW, Bazzaz FA, Canham CD, Levin SA (1995) Species diversity and ecosystem response to carbon fertilization: conclusions from a temperate forest model. Global Change Biol 1:373–381.

    Google Scholar 

  • Bormann FH, Likens GE (1979) Pattern and Process in a Forested Ecosystem. Springer-Verlag, New York.

    Google Scholar 

  • Butler TJ, Likens GE (1991) The impact of changing regional emissions on precipitation chemistry in the eastern United States. Atmos Environ 25A: 305–315.

    CAS  Google Scholar 

  • Churkina G, Running SW, Schloss AL, the Participants of Potsdam NPP Model Intercomparison (1999) Comparing global models of terrestrial net primary productivity (NPP): the importance of water availability. Global Change Biol 5(Suppl l):46–55.

    Google Scholar 

  • Compton J, Boone R, Motzkin G, Foster D (1998) Soil carbon and nitrogen in a pine-oak sand plain in central Massachusetts: role of vegetation and land-use history. Oecologia 116:536–542.

    Google Scholar 

  • Cooter EJ, Eder BK, LeDuc SK, Truppi L (1993) General Circulation Model Output for Forest Climate Change Research and Applications. United States Department of Agriculture (USDA) Forest Service, Gen Tech Rep SE-85.

    Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260.

    CAS  Google Scholar 

  • Cotrufo MF, Ineson P (1996) Elevated CO2 reduces field decomposition rates of Betula pendula (Roth.) leaf litter. Oecologia 106:525–530.

    Google Scholar 

  • Cramer W, Kicklighter DW, Bondeau A, Moore III B, Churkina G, Nemry B, Ruimy A, Schloss A, the Participants of the Potsdam NPP Model Intercomparison (1999) Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Global Change Biol 5(Suppl 1): 1–15.

    Google Scholar 

  • Cronon W (1983) Changes in the Land: Indians, Colonists, and the Ecology of New England. Hill and Wang, New York.

    Google Scholar 

  • Daily GC, Alexander S, Ehrlich PR, Goulder L, Lubchenko J, Matson PA, Mooney HA, Postel S, Schneider SH, Tilman D, Woodwell GM (1997) Ecosystem services: benefits supplied to human societies by natural ecosystems. Issues Ecol 2:1–16.

    Google Scholar 

  • Daly C, Neilson RP, Phillips DL (1994) A statistical-topographical model for mapping climatological precipitation over mountainous terrain. J Appl Meteorol 33:140–158.

    Google Scholar 

  • DeLucia EH, Hamilton JG, Naidu SL, Thomas RB, Andrews JA, Finzi A, Lavine M, Matamala R, Mohan JE, Hendrey GH, Schlesinger WH (1999) Net primary production of a forest ecosystem with experimental CO2 enrichment. Science 284:1177–1179.

    PubMed  CAS  Google Scholar 

  • Eamus D (1991) The interaction of rising CO2 and temperatures with water use efficiency. Plant Cell Environ 14:843–852.

    Google Scholar 

  • Eamus D, Jarvis PG (1989) The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial temperate trees and forests. Adv Ecol Res 19:1–55.

    Google Scholar 

  • Ellsworth DS, Oren R, Huang C, Phillips N, Hendrey GR (1995) Leaf and canopy responses to elevated CO2 in a pine forest under free-air CO2 enrichment. Oecologia 104:139–146.

    Google Scholar 

  • Field C, Mooney HA (1986) The photosynthesis-nitrogen relationships in wild plants. In: Givnish T (ed) On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, United Kingdom, pp 25–55.

    Google Scholar 

  • Field CB, Jackson RB, Mooney HA (1995) Stomatal responses to increased CO2: implications from the plant to the global scale. Plant Cell Environ 18: 1214–1225.

    Google Scholar 

  • Gates WL (1985) The use of general circulation models in the analysis of the ecosystem impacts of climatic change. Clim Change 7:267–284.

    Google Scholar 

  • Ghan SJ (1992) The GCM credibility gap. Clim Change 21:345–346.

    Google Scholar 

  • Glassy JM, Running SW (1994) Validating diurnal climatology logic of the MTCLIM model across a climatic gradient in Oregon. Ecol Applic 4:248–257.

    Google Scholar 

  • Goodale CL, Aber JD, Farrell EP (1998) Predicting the relative sensitivity of forest production in Ireland to site quality and climate change. Clim Res 10:51–67.

    Google Scholar 

  • Graham RL, Turner MG, Dale VH (1990) How increasing CO2 and climate change affect forests. BioScience 40:575–587.

    Google Scholar 

  • Hollinger DY (1987) Gas exchange and dry matter allocation responses to elevation of atmospheric CO2 concentration in seedlings of three tree species. Tree Physiol 3:193–202.

    PubMed  Google Scholar 

  • Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) IPPC (Intergovernmental Panel on Climate Change) (1996) Climate Change 1995: The Science of Climate Change. Cambridge University Press, Cambridge, United Kingdom.

    Google Scholar 

  • Hulme M (1995) A Historical Monthly Precipitation Dataset for Global Land Areas from 1900 to 1994, Griddedat 3.75 x 2.5 Resolution. Constructed at the Climate Research Unit, University of East Anglia, Norwich, United Kingdom.

    Google Scholar 

  • Idso KE, Idso SB (1994) Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: a review of the last 10 years’ research. Agric For Meteorol 69:153–203.

    Google Scholar 

  • Jarvis PG, McNaughton KG (1986) Stomatal control of transpiration: scaling up from leaf to region. Adv Ecol Res 15:1–49.

    Google Scholar 

  • Jenkins JC, Kicklighter DW, Ollinger SV, Aber JD, Melillo JM (1999) Sources of variability in NPP predictions at the regional scale: a comparison using PnET-II and TEM 4.0 in northeastern U.S. forests. Ecosystems 2(6):480–496.

    Google Scholar 

  • Jones PD, Raper SDB, Cherry BSG, Goodess CM, Wigley TML, Santer B, Kelly PM, Bradley RS, Diaz HF (1991) An updated global grid point surface air temperature anomaly data set: 1951-1990. ORNL/CDIAC-37, NDP-020/R1, Oak Ridge, TN.

    Google Scholar 

  • Kattenberg A, Giorgi F, Grassl H, Meehl GA, Mitchell JFB, Stouffer RJ, Tokioka T, Weaver AJ, Wigley TML (1996) Climate models: Projections of future climate. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) IPCC (Intergovernmental Panel on Climate Change) Climate Change 1995: The Science of Climate Change. Cambridge University Press, Cambridge, United Kingdom, pp 285–358.

    Google Scholar 

  • Kicklighter DW, Bruno M, Dönges S, Esser G, Heimann M, Helfrich J, Ift F, Joos F, Kaduk J, Kohlmaier GH, McGuire AD, Melillo JM, Meyer R, Moore B, Nadler A, Prentice IC, Sauf W, Schloss A, Sitch S, Wittenberg U, Würth G (1999) A first-order analysis of the potential role of CO2 fertilization to affect the global carbon budget: an intercomparison study of four terrestrial biosphere models. Tellus 51B:343–366.

    CAS  Google Scholar 

  • Kicklighter DW, Melillo JM, Peterjohn WJ, Rastetter EB, McGuire AD, Steudler PA (1994) Aspects of spatial and temporal aggregation in estimating regional carbon dioxide fluxes from temperate forest soils. J Geophys Res 99:1303–1315.

    CAS  Google Scholar 

  • Kittel TGF, Rosenbloom NA, Painter TH, Schimel DS, VEMAP (Vegetation/ Ecosystem Modelling and Analysis Project) Modeling Participants (1995) The VEMAP integrated database for modeling United States ecosystem/vegetation sensitivity to climate change. J Biogeogr 22:857–862.

    Google Scholar 

  • Koch GW, Mooney HA (1996) Carbon Dioxide and Terrestrial Ecosystems. Academic Press, San Diego, CA.

    Google Scholar 

  • Körner C (1996) The response of complex multispecies systems to elevated CO2. In: Walker B, Steffen W (eds) Global Change and Terrestrial Ecosystems. Cambridge University Press, Cambridge, United Kingdom, pp 20–42.

    Google Scholar 

  • Lathrop RG, Bognar JA (1994) Development and validation of AVHRR-derived regional land cover data for the northeastern US region. Int J Remote Sens 15:2695–2702.

    Google Scholar 

  • Leak WB (1974) Some Effects of Forest Preservation. Res Note NE-186. United States Department of Agriculture (USDA) Forest Service, Northeastern Forest Experiment Station, Radnor, PA.

    Google Scholar 

  • Likens GE (1992) The Ecosystem Approach: Its Use and Abuse. The Ecology Institute, Oldendorf/Luhe, Germany.

    Google Scholar 

  • Likens GE, Bormann FH (1995) Biogeochemistry of a Forested Ecosystem. 2nd ed. Springer-Verlag, New York.

    Google Scholar 

  • Likens GE, Driscoll CT, Buso DC (1996) Long-term effects of acid rain: response and recovery of a forest ecosystem. Science 272:244–246.

    CAS  Google Scholar 

  • Lovett GM (1994) Atmospheric deposition of nutrients and pollutants in North America: an ecological perspective. Ecol Applic 4:629–950.

    Google Scholar 

  • Lüscher A, Hendrey GR, Nösberger J (1998) Long-term responsiveness to free air CO2 enrichment of functional types, species, and genotypes of plants from fertile permanent grassland. Oecologia 113:37–45.

    Google Scholar 

  • Lüscher A, Nösberger J (1997) Interspecific and intraspecific variability in the response of grasses and legumes to free air CO2 enrichment. Acta Oecologia 18(3):269–275.

    Google Scholar 

  • Magill AH, Aber JD, Hendricks JJ, Bowden RD, Melillo JM, Steudler PA (1997) Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition. Ecol Applic 7:402–415.

    Google Scholar 

  • Magill AH, Downs MR, Nadelhoffer KJ, Hallett RA, Aber JD (1996) Forest ecosystem response to four years of chronic nitrate and sulfate additions at Bear Brooks Watershed, Maine, USA. For Ecol Manage 84:29–37.

    Google Scholar 

  • Manabe S, Wetherald RT, Mitchell JFB, Meleshko V, Tokioka T (1990) Equilibrium climate change—and its implications for the future. In: Houghton JT, Jenkins GJ, Ephraums JJ (eds) IPCC (Intergovernmental Panel on Climate Change) Climate Change: The IPCC Scientific Assessment. Cambridge University Press, Cambridge, United Kingdom, pp 131–172.

    Google Scholar 

  • Marks D, Dozier J (1992) Climate and energy exchange at the snow surface in the alpine region of the Sierra Nevada 2. Snow cover energy balance. Water Resour Res 28:3043–3054.

    Google Scholar 

  • McGuire AD, Melillo JM, Kicklighter DW, Pan Y, Xiao X, Helfrich J, Moore B III, Vorosmarty CJ, Schloss AL (1997) Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: sensitivity to changes in vegetation nitrogen concentration. Global Biogeochem Cycl 11:173–189.

    CAS  Google Scholar 

  • McGuire AD, Melillo JM, Joyce LA, Kicklighter DW, Grace AL, Moore B III, Vorosmarty CV (1992) Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America. Global Biogeochem Cycl 6:101–124.

    CAS  Google Scholar 

  • McGuire AD, Joyce LA, Kicklighter DW, Melillo JM, Esser G, Vorosmarty CJ (1993) Productivity response of climax temperate forests to elevated temperature and carbon dioxide: a North American comparison between two global models. Clim Change 24:287–310.

    CAS  Google Scholar 

  • McGuire AD, Melillo JM, Kicklighter DW, Joyce LA (1995) Equilibrium responses of soil carbon to climate change: empirical and process-based estimates. J Biogeogr 22:785–796.

    Google Scholar 

  • McNulty SG, Vose JM, Swank WT (1996) Loblolly pine hydrology and productivity across the southern United States. For Ecol Manage 86:241–251.

    Google Scholar 

  • Melillo JM, McGuire AD, Kicklighter DW, Moore BIII, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–239.

    CAS  Google Scholar 

  • Melillo JM, Prentice IC, Farquhar GD, Schulze E-D, Sala OE (1996) Terrestrial biotic responses to environmental change and feedbacks to climate. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) IPCC (Intergovernmental Panel on Climate Change) Climate Change 1995: The Science of Climate Change. Cambridge University Press, Cambridge, United Kingdom, pp 445–482.

    Google Scholar 

  • Mitchell JFB, Johns TC, Gregory JM, Tett SFB (1995) Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature 372:501–504.

    Google Scholar 

  • Mitchell MJ, Driscoll CT, Kahl JS, Likens GE, Murdoch PS, Pardo LH (1996) Climatic control of nitrate loss from forested watersheds in the northeastern United States. Environ Sci Tech 30:2609–2612.

    CAS  Google Scholar 

  • Mooney HA (1996) Ecosystem physiology: overview and synthesis. In: Walker B, Steffen W (eds) Global Change and Terrestrial Ecosystems. Cambridge University Press, Cambridge, United Kingdom, pp 13–19.

    Google Scholar 

  • Mooney HA, Drake BG, Luxmoore RJ, Oechel WC, Pitelka LF (1991) Prediction of ecosystem responses to elevated CO2 concentrations. BioScience 41:96–104.

    Google Scholar 

  • Mousseau M, Saugier B (1992) The direct effect of increased CO2 on gas exchange and growth of forest tree species. J Exp Bot 43:1121–1130.

    Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702.

    CAS  Google Scholar 

  • Nadelhoffer KJ, Emmett BA, Gunderson P, Kjonaas OJ, Koopmans CJ, Schleppi P, Tietema A, Wright RF (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145–148.

    CAS  Google Scholar 

  • Navas M-L (1998) Individual species performance and response of multi-species communities to elevated CO2: a review. Func Ecol 12:721–727.

    Google Scholar 

  • Neftel A, Moor E, Oeschger H, Stauffer B (1985) Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature 315:45–47.

    CAS  Google Scholar 

  • Nicholls N, Gruza GV, Jouzel J, Karl TR, Ogallo LA, Parker DE (1996) Observed climate variability and change. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) IPCC (Intergovernmental Panel on Climate Change) Climate Change 1995: The Science of Climate Change. Cambridge University Press, Cambridge, United Kingdom, pp 135–192.

    Google Scholar 

  • Ollinger SV, Aber JD, Federer CA (1998) Estimating regional forest productivity and water yield using an ecosystem model linked to a GIS. Landsc Ecol 13: 323–334.

    Google Scholar 

  • Ollinger SV, Aber JD, Federer CA, Lovett GM, Ellis JM (1995) Modeling Physical and Chemical Climate of the Northeastern United States for a Geographic Information System. Gen Tech Rep NE-191. United States Department of Agriculture (USDA) Forest Service, Northeastern Forest Experiment Station, Radnor, PA.

    Google Scholar 

  • Ollinger SV, Aber JD, Lovett GM, Millham SE, Lathrop RG, Ellis JM (1993) A spatial model of atmospheric deposition for the northeastern US. Ecol Applic 3:459–472.

    Google Scholar 

  • Ollinger SV, Aber JD, Reich P (1997) Simulating ozone effects on forest productivity: interactions among leaf-, canopy-, and stand-level processes. Ecol Applic 7:1237–1251.

    Google Scholar 

  • Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Science 263: 641–646.

    PubMed  CAS  Google Scholar 

  • Pan Y, Melillo JM, McGuire AD, Kicklighter DW, Pitelka LF, Hibbard K, Pierce LL, Running SW, Ojima DS, Parton WJ, Schimel DS and other VEMAP (Vegetative/Ecosystem Modeling and Analysis Project) Members (1998) Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: a comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP). Oecologia 114:389–404.

    Google Scholar 

  • Pan Y, McGuire AD, Kicklighter DW, Melillo JM (1996) The importance of climate and soils for estimates of net primary production: a sensitivity analysis with the terrestrial ecosystem model. Global Change Biol 2:5–23.

    Google Scholar 

  • Pastor J, Aber JD, McClaugherty CA, Melillo JM (1984) Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65:256–268.

    CAS  Google Scholar 

  • Pastor J, Post WM (1993) Linear regressions do not predict the transient responses of eastern North American forests to CO2-induced climate change. Clim Change 23:111–119.

    Google Scholar 

  • Pastor J, Post WM (1988) Response of northern forests to CO2-induced climate change. Nature 334:55–58.

    Google Scholar 

  • Raich JW, Rastetter EB, Melillo JM, Kicklighter DW, Steudler PA, Peterson BJ (1991) Potential net primary productivity in South America: application of a global model. Ecol Applic 1:399–429.

    Google Scholar 

  • Randlett DL, Zak DR, Pregitzer KS, Curtis PS (1996) Elevated atmospheric carbon dioxide and leaf litter chemistry: influences on microbial respiration and net nitrogen mineralization. Soil Sci Soc Am J 60:1571–1577.

    CAS  Google Scholar 

  • Rastetter EB (1996) Validating models of ecosystem response to global change. BioScience 46(3): 190–198.

    Google Scholar 

  • Rastetter EB, Ryan MG, Shaver GR, Melillo JM, Nadelhoffer KJ, Hobbie JE, Aber JA (1991) A general biogeochemical model describing the responses of the C and N cycles in terrestrial ecosystems to changes in CO2, climate, and N deposition. Tree Physiol 9:101–126.

    PubMed  CAS  Google Scholar 

  • Rastetter E, McKane R, Shaver G, Melillo J (1992) Changes in C storage by terrestrial ecosystems: How C-N interactions restrict responses to CO2 and temperature. Water Air Soil Pollut 64(l-2):327–344.

    CAS  Google Scholar 

  • Reich PB, Grigal DF, Aber JD, Gower ST (1997) Nitrogen mineralization and productivity in 50 temperate conifer and hardwood stands on diverse soils. Ecology 78:335–347.

    Google Scholar 

  • Reich PB, Kloeppel B, Ellsworth DS, Walters MB (1995) Different photosynthesis-nitrogen relations in deciduous and evergreen coniferous tree species. Oecologia 104:24–30.

    Google Scholar 

  • Ruimy A, Kergoat L, Bondeau A, the Participants of Potsdam NPP Model Intercomparison (1999) Comparing global models of terrestrial net primary productivity (NPP): analysis of differences in light absorption and light-use efficiency. Global Change Biol 5(Suppl l):56–64.

    Google Scholar 

  • Running SW, Nemani RR, Hungerford RD (1987) Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesis. Can J For Res 17: 472–483.

    Google Scholar 

  • Sage RF (1994) Acclimation of photosynthesis to increasing atmospheric CO2: the gas exchange perspective. Photosynth Res 39:351–368.

    CAS  Google Scholar 

  • Sage RF, Sharkey TD, Seemann JR (1989) Acclimation of photosynthesis to elevated CO2 in five C3 species. Plant Physiol 89:590–596.

    PubMed  CAS  Google Scholar 

  • Schimel DS, Alves D, Enting I, Heimann M (1996a) Radiative forcing of climate change. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) IPCC (Intergovernmental Panel on Climate Change) Climate Change 1995: The Science of Climate Change. Cambridge University Press, Cambridge, United Kingdom, pp 65–131.

    Google Scholar 

  • Schimel DS, Braswell BH, McKeown R, Ojima DS, Parton WJ, Pulliam W (1996b) Climate and nitrogen controls on the geography and time-scales of terrestrial biogeochemical cycling. Global Biogeochem Cycl 10: 677–692.

    CAS  Google Scholar 

  • Schimel DS, VEMAP Participants, Braswell BH (1997) Continental scale variability in ecosystem processes: Models, data, and the role of disturbance. Ecol Monogr 67:251–271.

    Google Scholar 

  • Schlesinger ME, Zhao Z-C (1989) Seasonal climate changes induced by doubled CO2 as simulated by the OSU atmospheric GCM-mixed layer ocean model. J Clim 2:459–495.

    CAS  Google Scholar 

  • Schloss AL, Kicklighter DW, Kaduk J, Wittenberg U, the Participants of the Potsdam NPP Model Intercomparison (1999) Comparing global models of terrestrial net primary productivity (NPP): comparison of NPP to climate and the normalized difference vegetation index. Global Change Biol 5(Suppl 1): 25–34.

    Google Scholar 

  • Sinclair TR, Tanner CB, Bennett JM (1984) Water-use efficiency in crop production. BioScience 34:36–40.

    Google Scholar 

  • Smith TM, Shugart HH (1993) The transient response of terrestrial carbon storage to a perturbed climate. Nature 361:523–526.

    Google Scholar 

  • Strain BR (1987) Direct effects of increasing atmospheric CO2 on plants and ecosystems. Tree 2:18–21.

    PubMed  CAS  Google Scholar 

  • Tanner CB, Sinclair TR (1983) Efficient water use in crop production: research or re-search. In: Taylor H (ed) Limitations to Efficient Water Use in Crop Production. American Society of Agronomy, Madison, Wisconsin, pp 1–28.

    Google Scholar 

  • Tian H, Melillo JM, Kicklighter DW, McGuire AD, Helfrich J (1999) The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States. Tellus 51B:414–452.

    CAS  Google Scholar 

  • Townsend AR, Braswell BH, Holland EA, Penner JE (1996) Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Ecol Applic 6:806–814.

    Google Scholar 

  • VEMAP (Vegetation/Ecosystem Modeling and Analysis Project) Members (1995) Vegetation/Ecosystem Modeling and Analysis Project: comparing biogeogra-phy and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Global Biogeochem Cycl 9:407–437.

    Google Scholar 

  • Vitousek PM (1992) Global environmental change: an introduction. Annu Rev Ecol Syst 23:1–14.

    Google Scholar 

  • Vitousek PM, Ehrlich PR, Ehrlich AE, Matson PA (1986) Human appropriation of the products of photosynthesis. BioScience 36:368–373.

    Google Scholar 

  • Vitousek PM, Aber J, Bayley SE, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman GD (1997) Human alteration of the global nitrogen cycle: causes and consequences. Issues Ecol 1:1–15.

    Google Scholar 

  • Wetherald RT, Manabe S (1988) Cloud feedback processes in a general circulation model. J Atmos Sci 45:1397–1415.

    Google Scholar 

  • Wetherald RT, Manabe S, Cubasch U, Cess RD (1990) Processes and modelling. In: Houghton JT, Jenkins GJ, Ephraums JJ (eds) IPCC (Intergovernmental Panel on Climate Change) Climate Change: The IPCC Scientific Assessment. Cambridge University Press, Cambridge, United Kingdom, pp 69–91.

    Google Scholar 

  • Whittaker RH, Bormann FH, Likens GE, Siccama TG (1974) The Hubbard Brook Ecosystem Study: forest biomass and production. Ecol Monogr 44(2):233–254.

    Google Scholar 

  • Wilsey BJ (1996) Plant responses to elevated CO2 among terrestrial biomes. Oikos 76:201–206.

    Google Scholar 

  • Wilson CA, Mitchell JFB (1987) A doubled CO2 climate sensitivity experiment with a global climate model including a simple ocean. J Geophys Res 92(D11):13315–13343.

    CAS  Google Scholar 

  • Wood CW, Torbert HA, Rogers HH, Runion GB, Prior SA (1994) Free-air CO2 enrichment effects on soil carbon and nitrogen. Agric For Meteorol 70:103–116.

    Google Scholar 

  • Wullschleger SD (1993) Biochemical limitations to carbon assimilation in C3 plants—a retrospective analysis of the A/Ci curves from 109 species. J Exp Bot 44:907–920.

    CAS  Google Scholar 

  • Xiao X, Kicklighter DW, Melillo JM, McGuire AD, Stone PH, Sokolov AP (1997) Linking a global terrestrial biogeochemical model and a 2-D climate model: implications for the global carbon budget. Tellus Ser B 49:18–37.

    Google Scholar 

  • Zak DR, Pregitzer KS, Teeri JA, Fogel R, Randlett DL (1993) Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant Soil 151:105–117.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jenkins, J.C., Kicklighter, D.W., Aber, J.D. (2000). Regional Impacts of Climate Change and Elevated Carbon Dioxide on Forest Productivity. In: Mickler, R.A., Birdsey, R.A., Hom, J. (eds) Responses of Northern U.S. Forests to Environmental Change. Ecological Studies, vol 139. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1256-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1256-0_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7064-5

  • Online ISBN: 978-1-4612-1256-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics