Skip to main content

Part of the book series: Nitric Oxide in Biology and Medicine ((NOBM,volume 1))

  • 66 Accesses

Abstract

Despite its very potent vasodilating action in vivo, acetylcholine does not always produce vasorelaxation in isolated blood vessel preparations (Furchgott and Bhadrakom 1953; Furchgott 1955). In 1980 Furchgott and Zawadski reported that the relaxing effect of acetylcholine on isolated arteries was dependent upon the presence of the vascular endothelium (Furchgott and Zawadzki 1980). They also suggested that the relaxing effect of acetylcholine was mediated by an unstable humoral factor, later named endothelium-dependent relaxing factor (EDRF) (Furchgott 1984, Martin et al. 1986). On the basis of the similar pharmacological responses of EDRF and nitric oxide (NO), two research groups independently published results in 1987 suggesting that NO accounts for the action of EDRF (Furchgott 1988; Ignarro et al. 1988). Further studies in vascular strips and platelets demonstrated that the activities of EDRF and NO were largely indistinguishable (Furchgott 1984; Griffith et al. 1984; Ignarro et al. 1987a,b). The similarity was finally confirmed, although questioned by others (Myers et al. 1990). Until recently, NO was discussed only for its contribution to environmental pollution, e. g., as an internal combustion engine pollutant, and in formation of smog and acid rain. However, from its apparent widespread distribution in mam malian biology (Nathan 1992), NO played an important role in the evolution of living systems (Anbar 1996). Nitric oxide was honored by receiving the title of “Molecule of the Yea” in 1992 (Culotta and Koshland 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adatia I, Thomson J, Landzberg M, et al. 1993. Inhaled nitric oxide in chronic obstructive lung disease. Lancet 341:307–308.

    Article  PubMed  CAS  Google Scholar 

  • Anbar M. 1996. The role of nitric oxide in the evolution of living systems from primordial prokaryotes to eukaryotes: a hypothesis. In: Moncada S, Stamler J, Gross S, and Higgs EA, eds. The Biology of Nitric Oxide, Part 5. London: Portland Press, p 226.

    Google Scholar 

  • Archer SL, Tolins JP, Raij L, & Weir EK. 1989. Hypoxie pulmonary vasoconstriction is enhanced by inhibition of the synthesis of an endothelium-dependent derived relaxing factor. Biochem. Biophys. Res. Commun. 164:1198–1205.

    Article  PubMed  CAS  Google Scholar 

  • Archer SL, Weir EK, & McMurty IF. 1989. Mechanism of acute hypoxic and hyperoxic changes in pulmonary vascular reactivity. In: Weir EK, Reeves JT, eds. Pulmonary Vascular Physiology and Pathophysiology. New York: Marcel Dekker, pp 241–290.

    Google Scholar 

  • Archer SL, Huang J, Henry T, Peterson D, & Weir EK. 1993. Aredox based oxygen sensor in rat pulmonary vasculature. Circ. Res. 73:1100–1112.

    Article  PubMed  CAS  Google Scholar 

  • Archer SL, Huang V. Hampl, Nelson DP, Shultz PJ, & Weir EK. 1994. Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc. Nad. Acad. Sci. USA 91:7583–7587.

    Article  CAS  Google Scholar 

  • Archer SL, Huang JMC, Reeve HL, Hampl V, Tolarov’ S, Michelakis E, & Weir EK. 1996. Differential distribution of electrophysiologically distinct myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia. Circ. Res. 78:431–442.

    Article  PubMed  CAS  Google Scholar 

  • Atz AM, Adatia I, Jonas RA, & Wessel DL. 1996. Inhaled nitric oxide in children with pulmonary hypertension and congenital mitral stenosis. Am. J. Cardiol. 77:316–319.

    Article  PubMed  CAS  Google Scholar 

  • Bansal V, Toga H, & Usha Raj J. 1993. Tone dependent nitric oxide production in ovine vessels in vitro. Respir Physiol. 93:249–260.

    Article  PubMed  CAS  Google Scholar 

  • Barbera JA, Roger N, Roca J, Rovira I, Higenbottam TW, & Rodriguez-Roisin R. 1996. Worsening of pulmonary gas exchange with nitric oxide inhalation in chronic obstructive pulmonary disease. Lancet. 347(8999):436–440.

    Google Scholar 

  • Bellan JA, Minkes RK, McNamara DB, & Kadowitz PJ. 1991. N G-nitro-L-arginine selectively inhibits vasodilator responses to acetylcholine and bradykinin in cats. Am. J. Physiol. 260:H1025–H1033.

    PubMed  CAS  Google Scholar 

  • Berner M, Beghetti M, Spahr-Schopfer I, Oberhansli I, & Friedli B. 1996. Inhaled nitric oxide to test the vasodilator capacity of the pulmonary vascular bed in children with long-standing pulmonary hypertension and congenital heart disease. Am. J. Cardiol. 77:532–535.

    Article  PubMed  CAS  Google Scholar 

  • Blomqvist H, Wickerts CJ, Andreen M, Uliberg U, Ortqvist A, & Frosteil C. 1993. Enhanced pneumonia resolution by inhalation of nitric oxide? Acta Anaesthesiol Scand 57:110–114.

    Article  Google Scholar 

  • Brashers VJ, Pearch MJ, & Rose CE Jr. 1988. Augmentation of hypoxic pulmonary vasoconstriction in the isolated perfused rat lung by in vitro antagonists of endothelium-dependent relaxation. J. Clin. Invest. 82:1495–1502.

    Article  PubMed  CAS  Google Scholar 

  • Chiuodi H, & Mohler JG. 1985. Effects of exposure of blood hemoglobin to nitric oxide. Environ. Res. 57:355–363.

    Article  Google Scholar 

  • Clapp L, & Gurney A. 1991. Outward currents in rabbit pulmonary artery cells disassociated with a new technique. Exp. Physiol. 76:667–693.

    Google Scholar 

  • Clapp LH, & Gurney AM. 1992. ATP-sensitive K+ channels regulate resting potential of pulmonary arterial smooth muscle cells. Am. J. Physiol. 262.H916–H920.

    PubMed  CAS  Google Scholar 

  • Cornfield DN, McQueston JA, McMurtry IF, Rodman DM, & Abman SH. 1992. Role of ATP-sensitive potassium channels in ovine fetal pulmonary vascular tone. Am. J. Physiol.:H1363–H1368.

    Google Scholar 

  • Culotta E, & Koshland DE Jr. 1992. Molecule of the year: NO news is good news. Science 258:1862–1865.

    Article  PubMed  CAS  Google Scholar 

  • Doyle MP, & Hoekstra JW. 1981. Oxidation of nitrogen oxides by bound dioxygen in he-moproteins. J. Inorg. Biochem. 14:351–358.

    Article  PubMed  CAS  Google Scholar 

  • Dumas JP, Dumas M, Sgro C, Advenier C, & Giudicelli JF. 1994. Effects of two K+ channel openers, aprikalim and pinacidil, on hypoxic pulmonary vasoconstriction. Eur. J. Pharmacol. 263:17–23.

    Article  PubMed  CAS  Google Scholar 

  • Edwards JC, Ignarro LJ, Hyman AL, & Kadowitz PJ. 1983. Relaxation of intrapulmonary artery and vein by nitrogen oxide-containing vasodilators and cyclic GMP. J. Pharmacol. Ther. 228:33–42.

    Google Scholar 

  • Feng CJ, Cheng DY, Kaye AD, Kadowitz PJ, & Nossaman BD. 1994. Influence of N 10-L-nitro-L-arginine methyl ester, LY83583, glybenclamide and L158809 in the perfused rat lung. Eur. J. Pharm. 263:133–140.

    Article  CAS  Google Scholar 

  • Fierobe L, Brunet F, Dhainaut JF, Monchi M, Belghith M, Mira JP, Dall’ava-Santucci J, & Dinh-Xuan AT. 1995. Effect of inhaled nitric oxide on right ventricular function in adult respiratory distress syndrome. Am. J. Respir. Crit. Care. Med. 151: 1414–1419.

    PubMed  CAS  Google Scholar 

  • Fishman AP. The enigma of hypoxic pulmonary vasoconstriction. 1990. In: Fishman AP, ed. The Pulmonary Circulation: Normal and Abnormal. Philadelphia: University of Pennsylvania Press, pp 109–1

    Google Scholar 

  • Frostell CG, Fratacci MD, Wain JC, Jones R, & Zapol WM. 1991. Inhaled nitric oxide. A selective pulmonary vasodilator reserving hypoxic pulmonary vasoconstriction. Circulation 83:2038–2047.

    Google Scholar 

  • Frostell CG, Bloomqvist H, Hedenstierna G, Lundberg J, & Zapol WM. 1993. Inhaled nitric oxide selectively reverses human pulmonary vasoconstrictions without causing system vasodilation. Anesthesiology 78:427–435.

    Article  PubMed  CAS  Google Scholar 

  • Fujino K, Nakaya S, Wakatsuki T, Miyoshi Y, Nakaya Y, Mori H, & Inoue I. 1991. Effects of nitroglycerin on ATP-induced Ca(+ + )-mobilization, Ca(+ + )-activated K channels and contraction of cultured smooth muscle cells of porcine coronary artery. J. Pharmacol. Exp. Ther. 256:371–377.

    PubMed  CAS  Google Scholar 

  • Furchgott RF, & Bhadrakom SJ. 1953. Pharmacol. Exp. Ther. 108:129–143.

    CAS  Google Scholar 

  • Furchgott RF. The pharmacology of vascular smooth muscle. 1955. Pharmacol. Rev. 7:183–265.

    PubMed  CAS  Google Scholar 

  • Furchgott RF, & Zawadzki JV. 1980. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle with acetylcholine. Nature 288:313–316.

    Article  Google Scholar 

  • Furchgott RF. 1984. The role of endothelium in the responses of vascular smooth muscle to drugs. Annu. Rev. Pharmacol. 24:115–191.

    Article  Google Scholar 

  • Furchgott RF. 1988. Studies on relaxation of rabbit aorta by sodium nitrite: the basis for the proposal that the acid-activatable inhibitory factor from retractor penis is inorganic nitrite and the endothelium-derived relaxing factor is nitric oxide. In: Vanhoutte PM, ed. Vasodilation: Vascular Smooth Muscle, Peptides, Autonomie Nerves and Endothelium. New York: Raven Press, pp 401–414.

    Google Scholar 

  • Gerlach H, Rossaint R, Pappert D, Knorr M, & Falke KJ. 1994. Autoinhalation of nitric oxide after endogenous synthesis in nasopharynx. Lancet 343:518–519.

    Article  PubMed  CAS  Google Scholar 

  • Gibson QH, & Roughton FJW. 1957. The kinetics of equilibria of the reactions of nitric oxide with sheep hemoglobin. J. Physiol. (Lond) 136:501–526.

    Google Scholar 

  • Griffith TM, Edwards DH, Lewis MJ, Newby AC, & Henderson AH. 1984. The nature of endothelium-derived vascular relaxant factor. Nature 308:645–641.

    Article  PubMed  CAS  Google Scholar 

  • Griffith TM, Edwards DH, Lewis MJ, et al. 1985. Evidence that cyclic guanosine monophosphate (cGMP) mediates endothelium-dependent relaxation. Eur. J. Pharmacol 772:195–202.

    Article  Google Scholar 

  • Grover RF, Wagner WW, McMurtry IF, & Reeves JT. 1983. Pulmonary circulation. In: Shepherd JT, Abboud FM, eds. Handbook of Physiology. Section 2: The Cardiovascular System, Vol III: Peripheral Circulation and Organ Blood Flow, Part I. Baltimore: Williams and Wilkins, pp 103, 137.

    Google Scholar 

  • Grover R, Murdoch I, Smithes M, Mitchell I, & Bihari D. 1992. Nitric oxide during hand ventilation in a patient with acute respiratory failure. Lancet 340:1038–1039.

    Article  PubMed  CAS  Google Scholar 

  • Hales CA, Rouse ET, & Slate JL. 1978. Influence of aspirin and indomethacin on variability of alveolar-hypoxic vasoconstriction. J. Appl. Physiol. 45:33–39.

    PubMed  CAS  Google Scholar 

  • Hales CA, & Westphal DM. 1979. Pulmonary hypoxic vasoconstriction: not affected by chemical sympathectomy. J. Appl. Physiol. 46:529–533.

    PubMed  CAS  Google Scholar 

  • Harvey AL, Vatanpour H, Rowan EG, Pinkasfeld S, Vita C, Menez A, & Martin-Eauclaire MF. 1995. Structure-activity studies on scorpion toxins that block potassium channels. Toxicon. 33:425–436.

    Article  PubMed  CAS  Google Scholar 

  • Hasunuma K, Rodman DM, & McMurtry IF. 1991. Effects of K+ channel blockers on vascular tone in the perfused rat lung. Am. Rev. Respir. Dis. 144:884–887.

    Article  PubMed  CAS  Google Scholar 

  • Hasunuma K, Yamaguchi T, Rodman DM, O’Brien RF, & McMurtry IF. 1991. Effects of inhibitors of EDRF and EDHF on vasoreactivity of perfused rat lungs. Am. J. Physiol. 260:191-xx.

    Google Scholar 

  • Hauge A. 1968. Conditions governing the pressor response to ventilation hypoxia in isolated perfused rat lungs. Acta Physiol. Scand. 72:33–44.

    Article  PubMed  CAS  Google Scholar 

  • Holzmann S. 1982. Endothelium-induced relaxation by acetylcholine associated with larger rises in cGMP in coronary arterial strips. J. Cyclic NucI Res. 8:409–419

    CAS  Google Scholar 

  • Hyman AL, Lippton HL, & Kadowitz PJ. 1991. Methylene blue prevents hypoxic pulmonary vasoconstriction in cats. Am. J. Physiol. 260:H586–H592.

    PubMed  CAS  Google Scholar 

  • Ignarro LJ. 1989. Endothelium-derived nitric oxide: actions and properties. FASEB J. 3:31–36.

    PubMed  CAS  Google Scholar 

  • Ignarro LJ, Burke TM, Wood KS, et al. 1983. Association between cyclic GMP accumulation and acetylcholine-elicited relaxation of bovine intrapulmonary artery. J. Pharmacol. Exp. Then 338:682–690.

    Google Scholar 

  • Ignarro LJ, Harbison RG, Wood KS, & Kadowitz PJ. 1986. Activation of purified soluble guanylate cyclase by endothelium-derived relaxing factor from intrapulmonary artery and vein: stimulation by acetylcholine, bradykinin and arachidonic acid. J. Pharmacol Exp. Ther. 237:893–897.

    PubMed  CAS  Google Scholar 

  • Ignarro LJ, Buga GM, Wood KS, Byrns RE, & Chaudhuri G. 1987a. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl Acad. Sci. USA 86:9265–9269.

    Article  Google Scholar 

  • Ignarro LJ, Buga RM, Byrns RE, Wood KS, & Chaudhuri G. 1987b. Endothelium-derived relaxing factor and nitric oxide possess identical pharmacological properties as relaxants of smooth muscle. J. Pharmacol. Exp. Ther. 228:682–690.

    Google Scholar 

  • Ignarro LJ, Byrns RE, & Wood KS. 1988. Studies on relaxation of rabbit aorta by sodium nitrite; the basis for the proposal that the acid-activatable inhibitory factor from retractor penis is inorganic nitrite and the endothelium-derived relaxing factor is nitric oxide. In: Vanhoutte PM, ed. Vasodilation: Vascular Smooth Muscle, Peptides, Autonomie Nerves and Endothelium. New York: Raven Press, pp 427–436.

    Google Scholar 

  • Janssens SP, Shimouchi A, Quertermous T, et al. 1992. Cloning and expression of a cDNA encoding human endothelium-derived relaxing factor/nitric oxide synthase. J. Biol. Chem. 26:14519–14522.

    Google Scholar 

  • Johns RA, Linden JM, & Peach MJ. 1989. Endothelium-dependent relaxation and cyclic GMP accumulation in rabbit pulmonary artery are selectively impaired by moderate hy-poxia. Circ. Res. 65:1508–1515.

    Article  PubMed  CAS  Google Scholar 

  • Kazemi H, Bruecke PE, & Parsons EF. 1972. Role of autonomie nervous system in the hy-poxic response of the pulmonary vascular bed. Respir. Physiol 75:245–254.

    Article  Google Scholar 

  • Liu SF, Crawley DE, Barnes PJ, & Evans TW. 1991. Endothelium-derived relaxing factor inhibits hypoxic pulmonary vasoconstriction in rats. Am. Rev. Resp. Dis. 143:32–31.

    PubMed  CAS  Google Scholar 

  • Lonigro AJ, Sprague RS, Stephenson AH, & Dahms TE. 1988. Relationship of leukotriene C4 and D4 to hypoxic vasoconstriction in dogs. J. Appl. Physiol. 64:2538–2543.

    PubMed  CAS  Google Scholar 

  • Lundberg JON, Rinder J, Weitzberg E, Lundberg JM, & Alving K. 1994. Nasally exhaled nitric oxide in humans originates mainly in the paranasal sinuses. Acta Physiol. Scand. 152:431–432.

    Article  PubMed  CAS  Google Scholar 

  • Lundberg JON, Lundberg JM, Settergren G, Alving K, & Weitzberg E. 1995. Nitric oxide, produced in the upper airways, may act in an’ aerocrine’ fashion to enhance pulmonary uptake in human. Acta Physiol. Scand. 155:467–468.

    Article  PubMed  CAS  Google Scholar 

  • MacLeod KM, Ng DDW, Harris KH, et al. 1987. Evidence that cGMP is the mediator of endothelium-dependent inhibition of contractile responses of rat arteries to α-adrenoceptor stimulation. Mol. Pharmacol. 32:59–64.

    PubMed  CAS  Google Scholar 

  • Madden JA, Vadula MS, & Kurup VP. 1992. Effects of hypoxia and other vasoactive agents on pulmonary and cerebral artery smooth muscle cells. Am. J. Physiol. 263:L384–L393.

    PubMed  CAS  Google Scholar 

  • Malik AB, & Kidd BS. 1973. Time course of pulmonary vascular response to hypoxia in dogs. Am. J. Physiol. 224:1–6.

    PubMed  CAS  Google Scholar 

  • Marshall BE, Marshall C, Benunoff J, & Saidman LJ. 1981. Hypoxic pulmonary vasoconstriction in dogs: effects of lung segment size and oxygen tension. J. Appl. Physiol. 51:1543–1551.

    PubMed  CAS  Google Scholar 

  • Marshall C, & Marshall BE. 1983. Influence of perfusate PO2 on hypoxic pulmonary vasoconstriction in rats. Circ. Res. 52:691–696.

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Furchgott RF, Villani GM, & Jothianandan D. 1986. Phosphodiesterase inhibitors induce endothelium-dependent relaxation of rat and rabbit aorta by potentiating the effects of spontaneously released endothelium-derived relaxing factor. J. Pharmacol. Exp. Ther. 237:539–541.

    Google Scholar 

  • Mazmanian G-M, Baudet B, Brink C, et al. 1989. Methylene blue potentiates vascular reactivity in isolated rat lungs. J. Appl Physiol 66:1040–1045.

    PubMed  CAS  Google Scholar 

  • McCormick DG, & Paterson NAM. 1993. Loss of hypoxic pulmonary vasoconstriction in chronic pneumonia is not mediated by nitric oxide. Am. J. Physiol 265:H1523–H1528.

    Google Scholar 

  • McMahon TJ, Hood JS, Bellan JA, & Kadowitz PJ. 1991. N G-nitro-L-arginine methyl ester selectively inhibits pulmonary vasodilator responses to acetylcholine and bradykinin. J. AppL PhysioL 77:2026–2031.

    Google Scholar 

  • McMurtry IF. 1984. Angiotensin is not required for hypoxic constriction in salt solution-perfused lungs. J. Appl Physiol 56:375–380.

    Article  PubMed  CAS  Google Scholar 

  • McMurtry IF, Rodman DM, Yamaguchi T, & O’Brien RF. 1988. Pulmonary vascular reactivity. Chest 93:88S–93S.

    PubMed  CAS  Google Scholar 

  • Moinard J, Manier G, Pillet O, & Castaing Y. 1994. Effect of inhaled nitric oxide on he-modynamics and VA/Q inequalities in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 149:1482–1487.

    PubMed  CAS  Google Scholar 

  • Moncada S, Palmer RM, & Higgs EA. 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43:109–142.

    PubMed  CAS  Google Scholar 

  • Morganroth ML, Stenmark KR, Morris KG, Murphy RC, Mathias M, Reeves JT, et al. 1985. Diethylcarbamizine inhibits acute and chronic hypoxic pulmonary hypertension in awake rats. Am. Rev. Respir. Dis. 131:488–492.

    PubMed  CAS  Google Scholar 

  • Murray TR, Chen L, Marshall BE, et al. 1990. Hypoxic contraction of cultured pulmonary vascular smooth muscle cells. Am. J. Respir. Cell. Mol. Biol. 3:457–465.

    Google Scholar 

  • Myers PR, Minor RLJ, Guerra RJ, Bates JN, & Harrision DG. 1990. Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocystein than nitric oxide. Nature 345:161–165.

    Article  PubMed  CAS  Google Scholar 

  • Nandiwada PA, Hyman AL, & Kadowitz PJ. 1983. Pulmonary vasodilator response to vagal stimulation and acetylcholine in the cat. Circ. Res. 53:86–95.

    Article  PubMed  CAS  Google Scholar 

  • Nathan C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J. 6:3051–3064.

    PubMed  CAS  Google Scholar 

  • Nossaman BD, Kaye AD, Feng CJ, & Kadowitz PJ. 1997. Effects of charybdotoxin on responses to nitrosovasodilators and hypoxia in the rat lung. Am. J. PhysioL 272: L573–L579.

    Google Scholar 

  • Oda H, Kusumoto S, & Nakajimia T. 1975. Nitrosyl-hemoglobin formation in the blood of animals exposed to nitric oxide. Arch. Environ. Health 30:453–465.

    PubMed  CAS  Google Scholar 

  • Ogata M, Ohe M, Katayose D, et al. 1992. Modulatory role of EDRF in hypoxic contraction of isolated porcine pulmonary arteries. Am. J. Physiol 262:H691–H697.

    PubMed  CAS  Google Scholar 

  • Ohe M, Ogata M, Katayose D, et al. 1992. Hypoxic contraction of pre-stretched human pulmonary artery. Resp. PhysioL 87:105–114.

    Article  CAS  Google Scholar 

  • Oka M, Hasunuma K, Webb JSA, et al. 1993. EDRF suppresses an unidentified vasoconstriction mechanism in hypertensive rat lungs. Am. J. Physiol 264:L587–L597.

    PubMed  CAS  Google Scholar 

  • Palmer RMJ, Ashton DS, & Moncada S. 1988a. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333:664–666.

    Article  PubMed  CAS  Google Scholar 

  • Palmer RM, Rees DD, Ashton DS, & Moncada S. 1988b. L-Arginine is the physiological precursor for the formation of nitric oxide endothelium-dependent relaxation. Biochem. Biophys. Res. Commun. 153:1251–1258.

    Article  PubMed  CAS  Google Scholar 

  • Pepke-Zaba J, Higgenbottam TW, Tuan Dinh-Xuan AT, & Stone D. 1991. Inhaled nitric oxide as a cause of selective pulmonary vasodilation in pulmonary hypertension. Lancet 338:1173–1174.

    Article  PubMed  CAS  Google Scholar 

  • Persson MG, Gustafsson LE, Wiklund NP, et al. 1990. Endogenous nitric oxide as a modulator of rabbit skeletal muscle microcirculation in vivo. Br. J. Pharmacol. 100:463–466.

    Article  PubMed  CAS  Google Scholar 

  • Pollock JS, Forstermann U, Mitchell JA, Warner TD, Schmidt HH, Nakane M, & Murad F. 1991. Purification and characterization of paniculate endothelium-derived relaxing factor synthase from cultured and native ovine aortic endothelial cells. Proc. Natl. Acad. Sci. USA 88:10480–10484.

    Article  PubMed  CAS  Google Scholar 

  • Porcelli RJ, Viau AT, Naftchi NE, & Bergofsky EH. 1977. 0-Receptor influence on lung vasoconstrictor responses to hypoxia and humoral agents. J. Appl Physiol. 43:612–616.

    PubMed  CAS  Google Scholar 

  • Post JM, Hume JR, Archer SL, & Weir EK. 1992. Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am. J. Physiol. 262.C882–C890.

    PubMed  CAS  Google Scholar 

  • Post JM, Gelband CH, & Hume JR. 1995. [Ca2]i Inhibition of K+ channels in canine pulmonary artery: novel mechanism for hypoxia-induced membrane depolarization. Circ. Res. 77:131–139.

    Article  PubMed  CAS  Google Scholar 

  • Radermacher P, & Rammos S. 1994. Low dose inhaled nitric oxide causing selective pulmonary vasodilation in child with idiopathic pulmonary hypertension. Eur. J. Pediatr. 153:691–693.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport RM, & Murad F. 1983. Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP Circ. Res. 52:352–357.

    Article  PubMed  CAS  Google Scholar 

  • Rees DD, Palmer RMJ, & Moncada S. 1989. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc. Natl. Acad. Sci. USA 86:3375–3378.

    Article  PubMed  CAS  Google Scholar 

  • Roberts JD Jr, Lang P, Bigatello LM, et al. 1993. Inhaled nitric oxide in congenital heart disease. Circulation 87:447–453.

    Article  PubMed  Google Scholar 

  • Robertson BE, Warren JB, & Nye PGG. 1990. Inhibition of nitric oxide synthesis potentiates hypoxic vasoconstriction in isolated rat lungs. Exp. Physiol. 75:255–257.

    PubMed  CAS  Google Scholar 

  • Robertson BE, Schubert R, Hescheler J, & Nelson MT. 1993. cGMP-dependent protein ki-nase activates Ca-activated K channels in cerebral artery smooth muscle cells. Am. J. Physiol. 265:C299–C303.

    PubMed  CAS  Google Scholar 

  • Rodman DM. 1992. Chronic hypoxia selectively augments rat pulmonary artery Ca2+ and K+ channel-mediated relaxation. Am. J. Physiol 263:L88–L94.

    PubMed  CAS  Google Scholar 

  • Rodman DM, Yamaguchi T, Hasunuma K, et al. 1990. Effects of hypoxia on endothelium-dependent relaxation of rat pulmonary artery. Am. J. Physiol. 258:L207–L214.

    PubMed  CAS  Google Scholar 

  • Rossetti M, Guenard H, & Gabinski C. 1996. Effects of nitric oxide inhalation on pulmonary serial vascular resistances in ARDS. Am. J. Respir. Crit. Care Med. 154:1375–1381.

    PubMed  CAS  Google Scholar 

  • Rubin LJ. 1995. Pulmonary hypertension and cor pulmonale. In: Bone RC, ed. Pulmonary and Critical Care Medicine. Vol. 2, L2, pp 1–9.

    Google Scholar 

  • Schuster DP, & Dennis DR. 1987. Leukotriene inhibitors do not block hypoxic pulmonary vasoconstriction in dogs. J. Appl. Physiol. 62:1808–1813.

    Article  PubMed  CAS  Google Scholar 

  • Silove ED, Inoue T, & Grover RF. 1968. Comparison of hypoxia, pH, and sympathomimetic drugs on bovine pulmonary muscle vasculature. J. Appl. Physiol. 24:355–365.

    PubMed  CAS  Google Scholar 

  • Silove ED, Inoue T, & Grover RF. 1968. Effects of alpha-adrenergic blockage and tissue catecholamine depletion on pulmonary vascular response to hypoxia. J. Clin. Invest. 47:274–285.

    Article  PubMed  CAS  Google Scholar 

  • Stamler JS, Loh E, Roddy M-A, Currie KE, & Creager MA. 1994. Nitric oxide regulated basal systemic and pulmonary vascular resistance in healthy humans. Circulation 89:2035–2040.

    Article  PubMed  CAS  Google Scholar 

  • Szidon JP, & Flint JF. 1977. Significance of sympathetic innervation of pulmonary vessels in response to acute hypoxia. J. Appl. Physiol. 43:65–71.

    PubMed  CAS  Google Scholar 

  • Tagaya E, Tamaoki J, Chiyotani A, Yamawaki I, Takemura H, & Konno K. 1995. Regulation of airway cholinergic neurotransmission by Ca(2+)-activated K channel and Na ( + )-K+ adenosinetriphosphatase. Exp. Lung Res. 21:683–694.

    Article  PubMed  CAS  Google Scholar 

  • Voelkel NF. 1986. Mechanism of hypoxic pulmonary vasoconstriction. Am. Rev. Respir. Dis. 135:1186–1195.

    Google Scholar 

  • Voekel NF, Gerber JG, McMurtry IF, Nies AS, & Reeves JT. 1981. Release of vasodilator prostaglandin, PGI2, from isolated rat lung during vasoconstriction. Cire. Res. 48:201–213.

    Google Scholar 

  • Von Euler US, & Liljestrand G. 1946. Observation on the pulmonary arterial blood pressure in the cat. Acta Physiol. Scand. 12:301–320.

    Article  Google Scholar 

  • Walmrath D, Schneider T, Schermuly R, Olschewski H, Grimminger F, and Seeger W. 1996. Direct comparison of inhaled nitric oxide and aerosolized prostacyclin in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 153:991–996.

    PubMed  CAS  Google Scholar 

  • Weiner CM, Dunn A, & Sylvester JT. 1991. ATP-dependent K+channels modulate vasoconstrictor responses to severe hypoxia in isolated ferret lung. J. Clin. Invest. 88:500–504.

    Article  Google Scholar 

  • Weir EK. 1978. Does normoxic pulmonary vasodilatation rather than hypoxic vasoconstriction account for the pulmonary pressor response to hypoxia? Lancet i: 416–477.

    Google Scholar 

  • Weir EK, McMurtry IF, Tucker A, Reeves JT, & Grover RF. 1976. Prostaglandin synthetase inhibitors do not decrease hypoxic pulmonary vasoconstriction. J. Appl. Physiol. 41:714–718.

    PubMed  CAS  Google Scholar 

  • Yaghi A, Paterson NA, & McCormack, DG. 1993. Nitric oxide does not mediate the attenuated pulmonary vascular reactivity of chronic pneumonia. Am. J. Physiol. 265(3 Pt 2):H943–H948.

    PubMed  CAS  Google Scholar 

  • Yuan X-J, Tod ML, Rubin LJ, et al. 1990. Contrasting effects of hypoxia on tension in rat pulmonary and mesenteric arteries. Am. J. Physiol. 259.H281–H289.

    PubMed  CAS  Google Scholar 

  • Yuan X-J, Goldman W, Tod M, Rubin L, & Blaustein M. 1993. Ionic currents in rat pulmonary and mesenteric arterial myocytes in primary culture and subculture. Am. J. Physiol. 264:U01-LI 15.

    Google Scholar 

  • Yuan X-J, Goldman W, Tod M, Rubin L, & Blaustein M. 1993. Hypoxia reduces potassium currents in cultured rat pulmonary but not mesenteric arterial myocytes. Am. J. Physiol. 264.L116–L123.

    PubMed  CAS  Google Scholar 

  • Zapol W, & Hurford W. 1993. Inhaled nitric oxide in adult respiratory distress syndrome and other lung diseases. New Horizons 1:638–650.

    PubMed  CAS  Google Scholar 

  • Zwissler R, Kemming G, Habler O, Kleen M, Merkel M, Haller M, Briegel J, Weite M, & Peter K. 1996Inhaled prostacyclin (PGI) versus inhaled nitric oxide in adult respiratory distress syndrome. Am. J. Respir. Crit. Care. Med. 154(6 Pt 1): 1671–1677.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nossaman, B.D., Kaye, A.D., Kadowitz, P.J. (2000). Nitric Oxide and the Pulmonary Circulation in the Adult. In: Kadowitz, P.J., McNamara, D.B. (eds) Nitric Oxide and the Regulation of the Peripheral Circulation. Nitric Oxide in Biology and Medicine, vol 1. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1326-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1326-0_13

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7095-9

  • Online ISBN: 978-1-4612-1326-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics