Skip to main content

Images and Level Sets of Additive Random Walks

  • Conference paper
High Dimensional Probability II

Part of the book series: Progress in Probability ((PRPR,volume 47))

Abstract

We define ℕo={0,1,...}and say that a stochastic process X ={X(n); n ∈ ℕ0 N} is an N-parameter, ℤd-valued, additive random walk, if there are N independent random walks X1, ... , X N on Zd, such that

$$X(n)={X_1}({n_1})+\cdots+{X_N}({n_N}),n\in N_0^N.$$

Here, nj denotes the jth coordinate of n ∈ ℕ0 N and we are following the standard convention of starting our (ordinary) random walks at the origin. That is, Xj (0) = 0 for all j = 1, … ,N. From now on, N will always denote the temporal dimension and d the spatial one, in accordance with the conventional language of stochastic processes.

This research was partially supported by an NSF grant and a grant from NATO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Barlow and S. J. Taylor (1989), Fractal dimensions of sets in discrete spaces, J. Phys. A 22, 2621–2626.

    Google Scholar 

  2. M. Barlow and S. J. Taylor (1992), Defining fractal subsets of ℕd, Proc. London Math. Soc. 64 (3), 125–152.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Cairoli (1968), Une inegalité pour martingales à indices multiples et ses applications, Séminaire de Probabilités IV, 1–27.

    Google Scholar 

  4. R. C. Dalang and T. S. Mountford (1997), Points of increase of the Brownian sheet, Prob. Th. Rel. Fields, 108 (1), 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. C. Dalang and T. S. Mountford (1996), Nondifferentiability of curves on the Brownian sheet, Ann. Probab, 24 (1), 182–195.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. C. Dalang and J. B. Walsh (1993), Geography of the level sets of the Brownian sheet, Prob. Th. Rel. Fields, 96 (2), 153–176.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. C. Dalang and J. B. Walsh (1993), The structure of a Brownian bubble, Prob. Th. Rel. Fields, 96 (4), 475–501.

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Dellacherie and P.-A. Meyer (1982), Probabilities and Potential, B. Theory of Martingales. North—Holland Publishing Co., Amsterdam. (J. P. Wilson, Trans. )

    Google Scholar 

  9. S. N. Evans (1987), Multiple points in the sample paths of a Lévy process, Prob. Th. Rel. Fields, 76 (3), 359–367.

    Article  Google Scholar 

  10. P. J. Fitzsimmons and T. S. Salisbury (1989), Capacity and energy for multiparameter processes, Ann. Inst. Henri Poincaré: Prob. Stat., 25 (3), 325–350.

    MathSciNet  MATH  Google Scholar 

  11. J.-P. Kahane (1985), Some Random Series of Functions, Cambridge Studies in Advanced Mathematics, Cambridge, U.K.

    MATH  Google Scholar 

  12. W. S. Kendall (1980), Contours of Brownian process with several—dimensional times, Z. Wahr. Verw. Geb. 52, 267–276.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Khoshnevisan (1999), Brownian sheet images and Bessel-Riesz capacity, Trans. Amer. Math. Soc., 351 (7), 2607–2622.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Khoshnevisan and Z. Shi (1999), Brownian sheet and capacity, Ann. of Probab., 27 (3), 1135–1159.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Khoshnevisan and Y. Xiao (1999), Level sets of additive Lévy processes. Preprint.

    Google Scholar 

  16. J.-F. LeGall, J. Rosen and N.-R. Shieh (1989), Multiple points of Lévy processes, Ann. of Probab., 17 (2), 503–515.

    Article  MathSciNet  Google Scholar 

  17. ] T. S. Mountford (1993), Estimates of the Hausdorff dimension of the boundary of positive Brownian sheet components, Séminaire de Probabilités, XXVII, 233–255, Lecture Notes in Math., #1557, Springer, Berlin.

    Google Scholar 

  18. J. B. Walsh (1986), Martingales with a Multidimensional Parameter and Stochastic Integrals in the Plane, Lecture Notes in Math. #1215, Springer, Berlin, Ed’s: G. del Piiio and R. Robodello.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this paper

Cite this paper

Khoshnevisan, D., Xiao, Y. (2000). Images and Level Sets of Additive Random Walks. In: Giné, E., Mason, D.M., Wellner, J.A. (eds) High Dimensional Probability II. Progress in Probability, vol 47. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1358-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1358-1_21

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7111-6

  • Online ISBN: 978-1-4612-1358-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics