Skip to main content

Subgroup Growth in pro-p Groups

  • Chapter
New Horizons in pro-p Groups

Part of the book series: Progress in Mathematics ((PM,volume 184))

Abstract

Let G be any group. We write a n (G) for the number of subgroups of G of index n. If G is a profinite group, we consider only open subgroups.1 If G is finitely generated, either as an abstract or as a profinite group, then a n (G) is finite. The study of the series a n (G), a subject that is known as subgroup growth,was begun by Hurwitz in the 19th century, with geometric motivation, and has become an active area of research in recent years. Let us mention, e.g., that a pro-p Groups G is p-adic analytic if and only if its subgroup growth is polynomial, i.e., there exist constants C and s such that a n (G) Cns for all n (see Section4 below and [2]). This characterisation of p-adic analytic groups was an instrumental stage in the characterisation of all groups of polynomial subgroup growth (known for short as PSG groups). Other applications of subgroup growth are found in [12] and [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Barnea and M. Larsen, Random generation in simple algebraic groups over local fields, submitted.

    Google Scholar 

  2. J. Dixon, M. P. F. duSautoy, A. Mann, and D. Segal, Analytic pro-p Groupss, 2nd edition, Cambridge University Press, 1999.

    Book  Google Scholar 

  3. M. P. F. duSautoy, Finitely generated groups, p-adic analytic groups and Poincaré series, Ann. Math.,137 (1993), 639–670.

    Article  MathSciNet  Google Scholar 

  4. M. P. F. duSautoy, p-groups, coclass and model theory: a proof of Conjecture P, submitted.

    Google Scholar 

  5. P. Hall, The Eulerian functions of a group, Quart. J. Math., 7(1936), 134–151.

    Article  Google Scholar 

  6. P. Hall, A partition formula connected with Abelian groups, Comm. Math. Hely, 11 (1938), 126–129.

    Article  Google Scholar 

  7. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford University Press, 1979.

    MATH  Google Scholar 

  8. G. Higman, Enumerating p-groups, I. Inequalities, Proc. London Math. Soc. (3), 10(1960), 10–24.

    Google Scholar 

  9. I. Ilani, Counting finite index subgroups and the P. Hall enumeration principle, Israel J. Math., 68 (1989), 18–26.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Lubotzky, Subgroup growth, Lecture Notes, University College, Galway, 1993.

    Google Scholar 

  11. A. Lubotzky, Counting finite index subgroups, in Groups ‘83 Galway/St Andrews, Cambridge University Press 1995

    Google Scholar 

  12. A. Lubotzky, Subgroup growth and congruence subgroups, Inv. Math., 119 (1995), 267–295.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Lubotzky, A. Mann and D. Segal, Finitely generated groups of polynomial subgroup growth, Israel J. Math., 82 (1993), 363–371.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Mann, Philip Hall’s ‘rather curious’ formula for abelian p-groups, Israel J. Math., 96 (1996) (S. A. Amitsur Memorial volume), 445–448.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Mann, Enumerating finite groups and their defining relations, J. Group Theory, 1 (1998), 59–64.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Mann, Positively finitely generated groups, Forum Math., 8 (1996), 429–459.

    Article  MathSciNet  MATH  Google Scholar 

  17. I. G. Macdonald, The algebra of partitions, in Group Theory: Essays for Philip Hall, Academic Press, London 1984

    Google Scholar 

  18. A. McIver and P. M. Neumann, Enumerating finite groups, Quart. J. Math., Oxford, 2 (1987), 473–488.

    Article  MathSciNet  Google Scholar 

  19. A. Mann and D. Segal, Subgroup growth: some current developments, in Infinite groups 94, de Gruyter, Berlin 1995, 179–197.

    Google Scholar 

  20. A. Mann and A. Shalev, Simple groups, maximal subgroups, and probabilistic aspects of profinite groups, Israel J. Math., 96 (1996) (S. A. Amitsur Memorial volume), 449–468.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Shalev, Growth functions, p-adic analytic groups and groups of finite coclass, J. London Math. Soc., 46 (1992), 111–122.

    Article  MathSciNet  Google Scholar 

  22. A. Shalev, Groups whose subgroup growth is less than linear, Int. J. Alg. Comp., 7 (1997), 77–91.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Segal and A. Shalev, Profinite groups with polynomial subgroup growth, J. London Math. Soc. (2), 55 (1997), 320–334.

    Article  MathSciNet  MATH  Google Scholar 

  24. E. C. Titchmarsh, The Theory of Functions, 2nd ed., Oxford University Press, 1952.

    Google Scholar 

  25. J. S. Wilson, Profinite groups, Oxford Univ. Press, 1998.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mann, A. (2000). Subgroup Growth in pro-p Groups. In: du Sautoy, M., Segal, D., Shalev, A. (eds) New Horizons in pro-p Groups. Progress in Mathematics, vol 184. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1380-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1380-2_8

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7122-2

  • Online ISBN: 978-1-4612-1380-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics