Skip to main content

Quantum Groups from Path Integrals

  • Chapter
Particles and Fields

Part of the book series: CRM Series in Mathematical Physics ((CRM))

Abstract

The goal of this discussion is to explain how quantum groups arise in three-dimensional topological quantum field theories (TQFTs). Of course, “explain how” is not the job of science, and perhaps you will find other explanations more satisfying. Let me explain!

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. F. R. Jones. A polynomial invariant of knots via von Neumann algebras. Bull. Amer. Math. Soc., 12 (1): 103–111, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Witten. Quantum field theory and the Jones polynomial. Commun. Math. Phys., 121 (3): 351–399, 1989.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. N. Y. Reshetikhin and V. G. Turaev. Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys., 127 (1): 1–26, 1990.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. N. Y. Reshetikhin and V. G. Turaev. Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math., 103 (3): 547–597, 1991.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. V. G. Turaev. Quantum Invariants of Knots and 3-Manifolds,volume 18 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, 1994.

    Google Scholar 

  6. R. Dijkgraaf and E. Witten. Topological gauge theories and group cohomology. Commun. Math. Phys., 129 (2): 393–429, 1990.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. R. Dijkgraaf, V. Pasquier, and P. Roche. Quasi Hopf algebras, group cohomology and orbifold models. In Recent Advances in Field Theory, (Annecy-le-Vieux, 1990), volume 18B of Nuclear Phys. B. Proc. Suppl., 1991. North-Holland, Amsterdam, pages 60–72.

    Google Scholar 

  8. D. Altschuler and A. Coste. Quasi-quantum groups, knots, 3-manifolds, and topological field theory. Commun. Math. Phys., 150 (1): 83–107, 1992.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. D. S. Freed. Higher algebraic structures and quantization. Commun. Math. Phys.,159: 343–398, 1994.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. D. S. Freed and F. Quinn. Chern-Simons theory with finite gauge group. Commun. Math. Phys., 156 (3): 435–472, 1993.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. D. S. Freed. Extended structure in topological quantum field theory. In L. H. Kauffman and R. A. Baadhio, eds., Quantum Topology. volume 3 of Series on Knots and Everything, World Scientific, River Edge, NJ, pages 162–173, 1993.

    Google Scholar 

  12. D. S. Freed. Characteristic numbers and generalized path integrals. In Geometry, Topology, and Physics. volume VI of Conf. Proc. Lecture Notes Geom. Topology, International Press, Cambridge, MA, pages 126–138, 1995.

    Google Scholar 

  13. D. S. Freed. Lectures in topological quantum field theory. In L. A. Ibort and M. A. Rodríguez, eds., Integrable Systems, Quantum Groups, and Quantum Field Theories. Kluwer Academic Publishers, Dordrecht, pages 95–156, 1993.

    Chapter  Google Scholar 

  14. D. S. Freed. Classical Chern-Simons theory. I. Ann. Math., 115 (2): 237–303, 1995.

    MathSciNet  Google Scholar 

  15. J. Mickelsson. Kac-Moody groups and the Dirac determinant line bundle. In Topological and Geometrical Methods in Field Theory,(Espoo, 1986), 1986. World Scientific, Teaneck, NJ, pages 117–131.

    Google Scholar 

  16. S. MacLane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Mathematics. Springer Verlag, New York, 1971.

    Google Scholar 

  17. E. Verlinde. Fusion rules and modular transformations in 2d conformal field theory. Nucl. Phys., B300 (3): 360–376, 1988.

    Article  MathSciNet  ADS  Google Scholar 

  18. M. M. Kapranov and V. A. Voevodsky. 2-categories and Zamolodchikov tetrahedra equations. In Algebraic Groups and their Generalizations: Quantum and Infinite-Dimensional Methods, (University Park, PA, 1991), volume 56, Part 2 of Proc. Sympos. Pure Math., 1994. Amer. Math. Soc., Providence, RI, pages 177–259.

    Google Scholar 

  19. R. Lawrence. Triangulations, categories and extended topological field theories. In L. H. Kauffman and R. A. Baadhio, eds., Quantum Topology. volume 3 of Series on Knots and Everything, World Scientific, Ridge River, NJ, pages 191–208, 1993.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Freed, D.S. (1999). Quantum Groups from Path Integrals. In: Semenoff, G., Vinet, L. (eds) Particles and Fields. CRM Series in Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1410-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1410-6_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7133-8

  • Online ISBN: 978-1-4612-1410-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics