Skip to main content

Transduction Based on Changes in the Energy Stored in an Electric Field

  • Chapter
Electromechanical Sensors and Actuators

Part of the book series: Mechanical Engineering Series ((MES))

Abstract

We begin our transduction mechanism discussion with transducers which are based on changes in the energy stored in an electric field. This class of mechanisms is capacitive. Some of these transducers accomplish energy conversion in a manner that is structurally dependent; some in a manner that is material dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Lorrain and D. R. Corson, Electromagnetic Fields and Waves (W. H. Freeman, San Francisco, 1970).

    Google Scholar 

  2. E. M. Purcell, Electricity and Magnetism (McGraw-Hill, New York, 1965).

    Google Scholar 

  3. W. H. Hayt, Jr., Engineering Electromagnetics (McGraw-Hill, New York, 1981).

    Google Scholar 

  4. L. Eyges, The Classical Electromagnetic Field (Addison-Wesley, Reading, MA, 1972).

    Google Scholar 

  5. H. H. Woodson and J. R. Melcher, Electromechanical Dynamics (Wiley, New York, 1968).

    Google Scholar 

  6. G. M. Sessler and J. E. West, Self-Biased Condenser Microphone with High Capacitance, J. Acoust. Soc. Am. 34, 1787 (1962). Reprinted in I. Groves (ed.), Acoustic Transducers (Hutchinson Ross, Stroudsburg, PA, 1981).

    Google Scholar 

  7. G. M. Sessler and J. E. West, Foil Electret Microphones, J. Acoust. Soc. Am. 40, 1433 (1966).

    Article  ADS  Google Scholar 

  8. G. M. Sessler (ed.), Electrets, 2nd ed. (Springer-Verlag, Berlin, 1987).

    Google Scholar 

  9. F. W. Fraim, P. V. Murphy, and R. J. Ferran, Electrets In Miniature Microphones, J. Acoust. Soc. Am. 53, 1601 (1973).

    Article  ADS  Google Scholar 

  10. Mechanical Technology Incorporated, Advanced Products Division, 968 Albany-Shaker Road, Latham, NY 12110, USA.

    Google Scholar 

  11. G. J. Philips and F. Hirschfeld, Rotating Machinery Bearing Analysis, Mechanical Engineering, 28 (1980).

    Google Scholar 

  12. M. R. Neuman and C. C. Liu, Fabrication of Biomedical Sensors Using Thin and Thick Film Microelectronic Technology, in C. Fung, P. W. Cheung, W. H. Ko, and D. G. Fleming (ed.), Micromachining and Micropackaging of Transducers (Elsevier, Amsterdam, 1985).

    Google Scholar 

  13. M. Despont, G. A. Racine, P. Renaud, and N. F. dr Rooij, New Design of a Micromachined Capacitive Force Sensor, J. Micromech. Microengng. 3, 239 (1993).

    Article  ADS  Google Scholar 

  14. Setra Systems, Inc., 159 Swanson Rd., Boxborough, MA 01719, USA.

    Google Scholar 

  15. S. D. Whitaker and D. B. Call, A New Hand-Held Barometer/Altimeter Offers Portable Accuracy, Sixth Symp. on Meterolog. Obs. and Instrum., Jan. 1987. New Orleans, LA, USA.

    Google Scholar 

  16. Atmospheric Instrumentation Research, Inc., 8401 Baseline Rd., Boulder, CO 80303, USA.

    Google Scholar 

  17. E. C. Wente, The Sensitivity and Precision of the Electrostatic Transmitter for Measuring Sound Intensities, Phys. Rev. 19, 498 (1922). Reprinted in I. Groves (ed.), Acoustic Transducers (Hutchinson Ross, Stroudsburg, PA, 1981).

    Article  ADS  Google Scholar 

  18. G. Rasmussen, P. V. Bruel, F. Skode, K. S. Hansen, and R. Frederiksen, Measuring Microphones (Bruel and Kjaer, Denmark, 1971).

    Google Scholar 

  19. M. Rossi, Acoustics and Electroacoustics (Artech, Norwood, MA, 1988).

    Google Scholar 

  20. J. J. Bernstein, Micromachined Acoustic Sensors, in M. D. McCollum, B. F. Hamonic, and O. B. Wilson (ed.), Transducers for Sonics and Ultrasonics (Technomic, Orlando, FL, 1992).

    Google Scholar 

  21. J. Fraden, AIP Handbook of Modern Sensors: Physics, Designs, and Applications (AIP Press, New York, 1993).

    Google Scholar 

  22. S. T. Cho and K. D. Wise, A High Performance Microflowmeter with Built-In Self Test, in Digest of Technical Papers, Transducers ’91 (IEEE, New York, 1991).

    Google Scholar 

  23. K. Sato and M. Shikida, Electrostatic Film Actuator with a Large Vertical Displacement, IEEE Micro Electro Mechanical Systems, Napa Valley, CA, p. 82, 1990.

    Google Scholar 

  24. T. W. Kenny, W. J. Kaiser, S. B. Waltman, and J. K. Reynolds, Novel Infrared Detector Based on a Tunneling Displacement Transducer, Appl. Phys. Lett. 59, 1820 (1991).

    Article  ADS  Google Scholar 

  25. K. Minami, S. Kawamura, and M. Esashi, Fabrication of Distributed Electrostatic Actuator (DEMA), J. MEMS. 2, 121 (1993).

    Article  Google Scholar 

  26. GMC Instruments, Inc., 250 Telser Rd., Unit F, Lake Zurich, IL 60047.

    Google Scholar 

  27. L. S. Fan, R. M. White, and R. S. Muller, A Mutual Capacitive Normal-and Shear-Sensitive Tactile Sensor, Proc. IEEE Int. Electron. Devices Mtg., 1984, p. 220.

    Google Scholar 

  28. O. Jefimenko, Electrostatic Motors (Electret Scientific, Star City, WVA, 1973).

    Google Scholar 

  29. J. Brysek, K. Petersen, J. R. Mallon Jr., L. Christel, and F. Pourahmadi, Silicon Sensors and Microstructures (NovaSensor, Fremont, CA, 1990).

    Google Scholar 

  30. M. J. Daneman, N. C. Tien, O. Solgaard, A. P. Pisano, K. Y. Lau, and R. S. MullerLinear Microvibromotor for Positioning Optical Components, J. MEMS, 5, 159 (1996).

    Article  Google Scholar 

  31. M. G. Lim, J. C. Chang, D. P. Schultz, R. T. Howe, and R. M. WhitePolysilicon Microstructures to Characterize Static Friction, Proc. IEEE Micro Electro Mechanical Systems, Napa Valley, CA, p. 82, 1990.

    Google Scholar 

  32. Turck, Inc., 3000 Campus Drive, Plymouth, MN 55441, USA.

    Google Scholar 

  33. Hy Cal Sensing Products, Division of Micro Switch, 9650 Telstar Avenue, El Monte, CA 91731, USA.

    Google Scholar 

  34. K. Uchino, Electrostrictive Actuators: Materials and Applications, Ceramic Bull. 65, 647 (1986).

    Google Scholar 

  35. E. H. Anderson, D. M. Moore, J. L. Fanson, and M. A Ealey, Development of an Active Truss Element for Control of Precision Structures, Optical Engrg. 29, 1333 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Busch-Vishniac, I.J. (1999). Transduction Based on Changes in the Energy Stored in an Electric Field. In: Electromechanical Sensors and Actuators. Mechanical Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1434-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1434-2_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7142-0

  • Online ISBN: 978-1-4612-1434-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics