Skip to main content

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 115))

Abstract

A new heteroclinic cycle is demonstrated in the case of thermal convection in a layer heated from below and rotating about a horizontal axis. This system can be realized experimentally through the use of the centrifugal force as effective gravity in the system of the rotating cylindrical annulus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. KRUPA, M., Robust heteroclinic cycles, J. Nonlinear Sci., 7, 129–176, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  2. KüPPERS, G., AND LORTZ, D., Transition from laminar convection to thermal turbulence in a rotating fluid layer, J. Fluid Mech., 35, 609–620, 1969.

    Article  MATH  Google Scholar 

  3. BUSSE, F.H., AND CLEVER, R.M., Nonstationary convection in a rotating system, 376–385 in Recent Developments in Theoretical and Experimental Fluid Mechanics, U. Müller, K.G. Roesner, B. Schmidt, eds., Springer, 1979.

    Google Scholar 

  4. BUSSE, F.H., Transition to turbulence via the statistical limit cycle route, 197–202 in Turbulence and Chaotic Phenomena in Fluids, T. Tatsumi, ed., Elsevier, 1984.

    Google Scholar 

  5. Tu, Y., AND CROSS, M.C., Chaotic Domain Structure in Rotating Convection, Phys. Rev. Lett., 69, 2515–2518, 1992.

    Article  Google Scholar 

  6. BUSSE, F.H., AND HEIKES, K.E., Convection in a rotating layer: A simple case of turbulence, SCIENCE, 208, 173–175, 1980.

    Article  Google Scholar 

  7. HEIKES, K.E., AND BUSSE, F.H., Weakly nonlinear turbulence in a rotating convection layer, Annals N.Y. Academy of Sciences, 357, 28–36, 1980.

    Article  Google Scholar 

  8. ZHONG, F., ECKE, R.E., AND STEINBERG, V., Asymmetric modes and the transition to vortex structures in rotating Rayleigh-Bénard convection, Phys. Rev. Lett., 67, 2473–2476, 1991.

    Article  Google Scholar 

  9. Hu, Y., ECKE, R.E., AND AHLERS, G., Time and Length Scales in Rotating Rayleigh-Bénard Convection, Phys. Rev. Lett., 74, 5040–5043, 1995.

    Article  Google Scholar 

  10. Hu, Y., ECKE, R.E., AND AHLERS, G., Convection under rotation for Prandtl numbers near 1: Linear stability, wavenumber selection and pattern dynamics, Phys. Rev. E, 55, 6928–6949, 1997.

    Article  Google Scholar 

  11. MlLLàN-RODRIGUEZ, J., BESTEHORN, M., PéREZ-GARCiA, C., FRIEDRICH, R., AND NEUFELD, M., Defect motion in rotating fluids, Phys. Rev. Lett., 74, 530–533, 1995.

    Article  Google Scholar 

  12. PESCH, W., Complex spatio-temporal convection patterns, CHAOS, 6, 348–357, 1996.

    Article  Google Scholar 

  13. AUER, M., BUSSE, F.H., AND CLEVER, R.M., Three-dimensional convection driven by centrifugal buoyancy, J. Fluid Mech., 301, 371–382, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  14. JALETZKY, M., AND BUSSE, F.H., New Pattern of Convection Driven by Centrifugal Buoyancy, ZAMM, to be published, 1998.

    Google Scholar 

  15. BUSSE, F.H., Thermal instabilities in rapidly rotating systems, J. Fluid Mech., 44, 441–460, 1970.

    Article  MATH  Google Scholar 

  16. SCHLüTER, A., LORTZ, D., AND BUSSE, F., On the stability of steady finite amplitude convection, J. Fluid Mech., 23, 129–144, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  17. CLEVER, R.M., AND BUSSE, F.H., Steady and Oscillatory Bimodal Convection, J. Fluid Mech., 271, 103–118, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  18. CLEVER, R.M., AND BUSSE, F.H., Standing and Oscillatory Blob Convection, J. Fluid Mech., 297, 255–273, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  19. SCHMITT, B.J., AND WAHL, W. Von, Decomposition of Solenoidal Fields into Poloidal Fields, Toroidal Fields and the Mean Flow, Applications to the Boussinesq-Equations, pp. 291–305 in “The Navier-Stokes Equations II — Theory and Numerical Methods”. J.G. Heywood, K. Masuda, R. Rautmann, S.A. Solonnikov, eds., Springer Lecture Notes in Mathematics 1530, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Busse, F., Clever, R. (1999). Heteroclinic Cycles and Phase Turbulence. In: Golubitsky, M., Luss, D., Strogatz, S.H. (eds) Pattern Formation in Continuous and Coupled Systems. The IMA Volumes in Mathematics and its Applications, vol 115. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1558-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1558-5_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7192-5

  • Online ISBN: 978-1-4612-1558-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics