Skip to main content

A Fully Formalized Theory for Describing Visual Notations

  • Chapter
Visual Language Theory

Abstract

This chapter addresses issues in visual language theory with the help of logic formalisms that were developed for reasoning tasks by the artificial intelligence and spatial databases community, especially for spatial and diagrammatical reasoning. We describe an approach based on three formal components.Topologyis used to define basic geometric objects. Theory aboutspatial relationsfrom the domain of spatial databases is employed to define possible relationships between visual language elements.Description logic theoryfrom the AI community is used to combine topology and spatial relations. We prove the feasibility of our theory by describing three representative visual notations: entity-relationship diagrams, petri nets, and a pictorial language for concurrent logic programming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Baader and P. Hanschke. A scheme for integrating concrete domains into concept languages. InTwelfth International Conference288 Volker Haarslevon Artificial Intelligence Darling Harbour Sydney Australia Aug. 2.4–30 1991 pages 452–457, August 1991.

    Google Scholar 

  2. A. Borgida. Description logics in data management.IEEE Transactions on Knowledge and Data Engineering7(5):671–682, 1995.

    Article  Google Scholar 

  3. A. Borgida and P.F. Patel-Schneider. A semantics and complete algorithm for subsumption in the CLASSIC description logic.Journal of Artificial Intelligence Research1:277–308, 1994.

    MATH  Google Scholar 

  4. R.J. Brachman. “Reducing” CLASSIC to practice: knowledge representation theory meets reality.In Principles of Knowledge Representation and Reasoning, Third International Conference, Cambridge, Mass., Oct. 25–29 1992pages 247–258, October 1992.

    Google Scholar 

  5. R.J. Brachman, D.L. McGuinness, P.F. Patel-Schneider, L.A. Reswnick, and A. Borgida. Living with CLASSIC: when and how to use a KL-ONE-like language. In J.F. Sowa, editorPrinciples of Semantic Networks: Explorations in the Representation of Knowledgepages 401–456. Morgan Kaufmann Publishers, San Mateo, 1991.

    Google Scholar 

  6. R.J. Brachman and J.G. Schmolze. An overview of the KL-ONE knowledge representation system.Cognitive Sciencepages 171–216, August 1985.

    Google Scholar 

  7. W. Citrin, M. Doherty, and B. Zorn. Formal semantics of control in a completely visual programming language. In1994 IEEE Symposium on Visual Languages St. Louis Missouri Oct.4–7, pages 208–215. IEEE Computer Society Press, Los Alamitos, October 1994.

    Chapter  Google Scholar 

  8. B.L. Clarke. A calculus of individuals based on ‘connection’.Notre Dame Journal of Formal Logic22(3):204–218, July 1981.

    Article  MathSciNet  MATH  Google Scholar 

  9. B.L. Clarke. Individuals and points.Notre Dame Journal of Formal Logic26(1):204–218, January 1985.

    Google Scholar 

  10. E. Clementini and P. Di Felice. Approximate topological relations.International Journal of Approximate Reasoning16:173–204, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Clementini, P. Di Felice, and P. van Oosterom. A small set of formal topological relationships suitable for end-user interaction. In D. Abel and B.C. Ooi, editorsAdvances in Spatial Databases Third International Symposium SSD’93 Singapore June 23–25 1993volume 692 ofLecture Notes in Computer Sciencepages 277–295. Springer Verlag, Berlin, June 1993.

    Google Scholar 

  12. A.G. Cohn and J.M. Gooday. Defining the syntax and the semantics of a visual programming language in a spatial logic. InAAAI-94 Spatial and Temporal Reasoning Workshop1994.

    Google Scholar 

  13. G. Costagliola, M. Tomita, and S.K. Chang. A generalized parser for 2-D languages. In1991 IEEE Workshop on Visual Languages Kobe Japan Oct. 8–11pages 98–104. IEEE Computer Society Press, Los Alamitos, October 1991.

    Chapter  Google Scholar 

  14. C. Crimi, A. Guercio, G. Nota, G. Pacini, G. Tortora, and M. Tucci. Relation grammars and their application to multi-dimensional languages.Journal of Visual Languages and Computing2(4):333–346, December 1991.

    Article  Google Scholar 

  15. M.J. Egenhofer. Reasoning about binary topological relations. In O. Günther and 11.-J. Schek, editorsAdvances in Spatial Databases Second Symposium SSD’91 Zurich Aug. 28–30 1991volume 525 ofLecture Notes in Computer Sciencepages 143–160. Springer Verlag, Berlin, August 1991.

    Google Scholar 

  16. E.J. Golin.Parsing visual languages with picture layout grammarsJournal of Visual Languages and Computing2(4):371–393, December 1991.

    Article  Google Scholar 

  17. J.M. Gooday and A.G. Cohn. Using spatial logic to describe visual programming languages.Artificial Intelligence Review10:171–186, 1996.

    Article  Google Scholar 

  18. H. Göttler. Graph grammars, a new paradigm for implementing visual languages. InRewriting Techniques and Applications 3rd International Conference RTA-89 3–5 April 1989 Chapel Hill NCpages 152–166. Springer Verlag, Berlin, April 1989.

    Chapter  Google Scholar 

  19. V. Haarslev. Formal semantics of visual languages using spatial reasoning. In1995 IEEE Symposium on Visual Languages Darmstadt Germany Sep. 5–9pages 156–163. IEEE Computer Society Press, Los Alamitos, September 1995.

    Chapter  Google Scholar 

  20. V. Haarslev. Using description logic for reasoning about diagrammatical notations. In L. Padgham et al., editorsProceedings of the International Workshop on Description Logics Nov. 2–4 1996 Cambridge Massachusettspages 124–128. AAAI Press, Menlo Park, November 1996. Technical Report WS-96–05.

    Google Scholar 

  21. V. Haarslev and R. Möller. SBox: A qualitative spatial reasoner—progress report. In L. Ironi, editor11th International Workshop on Qualitative Reasoning Cortona Tuscany Italy June 3–6 1997 Pubblicazioni N. 1036 Istituto di Analisi Numerica C.N.R. Pavia (Italy)pages 105–113, June 1997.

    Google Scholar 

  22. V. Haarslev and R. Möller. Spatioterminological reasoning: subsumption based on geometrical inferences. In M.-C. Rousset et al., editorsProceedings of the International Workshop on Description Logics DL’97 Sep. 27–29 1997 Gif sur Yvette Francepages 74–78. Universite Paris-Sud, Paris, September 1997.

    Google Scholar 

  23. V. Haarslev and M. Wessel. GenEd—an editor with generic semantics for formal reasoning about visual notations. In1996 IEEE Symposium on Visual Languages Boulder Colorado USA Sep. 3–6pages 204–211. IEEE Computer Society Press, Los Alamitos, September 1996.

    Google Scholar 

  24. V. Haarslev and M. Wessel. Querying GIS with animated spatial sketches. In1997 IEEE Symposium on Visual Languages Capri Italy Sep. 23–26pages 197–204. IEEE Computer Society Press, Los Alamitos, September 1997.

    Chapter  Google Scholar 

  25. P. Hanschke.A Declarative Integration of Terminological Constraint-based Data-driven and Goal-directed Reasoning. Infix, Sankt Augustin, 1996.

    Google Scholar 

  26. R. Helm and K. Marriott. A declarative specification and semantics for visual languages.Journal of Visual Languages and Computing2(4):311–331, December 1991.

    Article  Google Scholar 

  27. K.M. Kahn and V.A. Saraswat. Complete visualizations of concurrent programs and their executions. In1990 IEEE Workshop on Visual Languages Skokie Illinois Oct. 4–6pages 7–14. IEEE Computer Society Press, Los Alamitos, October 1990.

    Chapter  Google Scholar 

  28. K.M. Kahn, V.A. Saraswat, and V. Haarslev. Pictorial Janus: a completely visual programming language and its environment (in German). In J. Encarnacao, editorGI-Fachgespräch Programmieren multimedialer Anwendungen der GI-Jahrestagung 1991 Darmstadt Oktober 1991pages 427–436. Springer Verlag, Berlin, 1991.

    Google Scholar 

  29. H. Lange and C. Schröder. Analysis and interpretation of changes in aerial images: knowledge interpretation and spatial reasoning In H. Ebner, C. Heipke, and K. Eder, editors, ISPRS Commision III Symposium - Spatial Information from Digital Photogrammetry and Computer Vision, Munich, Germany, Sep. 5–9, 1994, volume 30 of International Archives of Photogrammetry and Remote sensing, pages 475–482, September 1994.

    Google Scholar 

  30. K. Marriott. Constraint multiset grammars. In1994 IEEE Symposium on Visual Languages St. Louis Missouri Oct. 4–7pages 118–125. IEEE Computer Society Press, Los Alamitos, October 1994.

    Google Scholar 

  31. B. Meyer. Pictures depicting pictures: On the specification of visual languages by visual grammars In1992 IEEE Workshop on Visual Languages Seattle Washington, Sept. 15–18pages 41–47. IEEE Computer Society Press, Los Alamitos, September 1992.

    Google Scholar 

  32. M.A. Najork and S.M. Kaplan. Specifying visual languages with conditional set rewrite systems. In1993 IEEE Symposium on Visual Languages Bergen Norway Aug. 24–27pages 12–17. IEEE Computer Society Press, Los Alamitos, August 1993.

    Chapter  Google Scholar 

  33. D.A. Randell, Z. Cui, and A.G. Cohn. A spatial logic based on regions and connections. In B. Nebel, C. Rich, and W. Swartout, editors, Principles of Knowledge Representation and Reasoning, Cambridge, Mass.Oct. 25–29 1992pages 165–176, October 1992.

    Google Scholar 

  34. R. Reiter and A.K. Mackworth. A logical framework for depiction and image interpretation.Artificial Intelligence41:125–155, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Rekers and A. Schürr. A graph grammar approach to graphical parsing. In1995 IEEE Symposium on Visual Languages Darmstadt Germany Sep. 5–9pages 195–202. IEEE Computer Society Press, Los Alamitos, September 1995.

    Chapter  Google Scholar 

  36. C. Schröder and B. Neumann.On the logics of image interpretation: model-construction in a formal knowledge-representation framework. InProceedings of the 1996 IEEE International Conference on Image Processing ICIP-96 Lausanne September 16–19 1996volume 2, pages 785–788. IEEE Computer Society Press, Los Alamitos, September 1996.

    Chapter  Google Scholar 

  37. J.A. Serrano. The use of semantic constraints on diagram editors. In1995 IEEE Symposium on Visual Languages Darmstadt Germany Sep. 5–9pages 211–216. IEEE Computer Society Press, Los Alamitos, September 1995.

    Chapter  Google Scholar 

  38. S.-J. Shin.The Logical Status of Diagrams.Cambridge University Press, Cambridge, 1994.

    MATH  Google Scholar 

  39. E. Spanier.Algebraic Topology.McGraw-Hill Book Company, New York, 1966.

    MATH  Google Scholar 

  40. 1994 IEEE Symposium on Visual Languages St. Louis Missouri Oct. 4–7.IEEE Computer Society Press, Los Alamitos, October 1994.

    Google Scholar 

  41. 1995 IEEE Symposium on Visual Languages Darmstadt Germany Sep. 5–9.IEEE Computer Society Press, Los Alamitos, September 1995.

    Google Scholar 

  42. D. Wang and J.R. Lee. Pictorial concepts and a concept-supporting graphical system.Journal of Visual Languages and Computing4(2):177–199, June 1993.

    Article  MathSciNet  Google Scholar 

  43. D. Wang and J.R. Lee. Visual reasoning its formal semantics and applications.Journal of Visual Languages and Computing4(4):327–356, December 1993.

    Article  MathSciNet  Google Scholar 

  44. D. Wang, J.R. Lee, and H. Zeevat. Reasoning with diagrammatic representations. In J. Glasgow, N.H. Narayanan, and B. Chandrasekaran, editorsDiagrammatic Reasoning: Cognitive and Computational Perspectivespages 339–393. AAAI Press / The MIT Press, Menlo Park, 1995.

    Google Scholar 

  45. M. Wessel. Development of a concept-oriented generic graphic editor in Common Lisp (in German), January 1996. Studienarbeit.

    Google Scholar 

  46. K. Wittenburg. Adventures in multi-dimensional parsing: cycles and disorders. In1993 International Workshop on Parsing Technologies Tilburg Netherlands and Durbuy Belgium Aug. 8–10August 1993.

    Google Scholar 

  47. K. Wittenburg, L. Weitzman, and J. Talley. Unification-based grammars and tabular parsing for graphical languages.Journal of Visual Languages and Computing2(4):347–370, December 1991.

    Article  Google Scholar 

  48. W.A. Woods and J.G. Schmolze. The KL-ONE family. In F. Lehmann, editorSemantic Networks in Artificial Intelligencepages 133–177. Pergamon Press, Oxford, 1992.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Haarslev, V. (1998). A Fully Formalized Theory for Describing Visual Notations. In: Marriott, K., Meyer, B. (eds) Visual Language Theory. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1676-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1676-6_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7240-3

  • Online ISBN: 978-1-4612-1676-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics