Skip to main content

Exterior Differential Systems in Control and Robotics

  • Chapter
Essays on Mathematical Robotics

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 104))

Abstract

The vast majority of the mathematically oriented literature in the areas of robotics and control has been heavily influenced by a differential geometric point of view. For nonlinear systems in particular, most of the research has concentrated on the analysis of the Lie algebras associated with controllability, reachability and observability. In recent years, however, a small but influential trend has begun in the literature on the use of other methods, such as differential algebra [9, 8, 10] and exterior differential systems [13, 11] for the analysis of nonlinear control systems and nonlinear implicit systems. In this paper we survey some key results from the theory of exterior differential systems and their application to current and challenging problems in robotics and control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Abraham, J.E. Marsden, and T. Ratiu, Manifolds, tensor analysis, and applications, second ed., Springer-Verlag, 1983.

    Google Scholar 

  2. E. Aranda-Bricaire, C.H. Moog, and J-B. Pomet, A linear algebraic framework for dynamic feedback linearization, IEEE Transactions on Automatic Control 40 (1995), no. 1, 127–132.

    Article  MathSciNet  MATH  Google Scholar 

  3. R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmidt, and P.A. Griffiths, Exterior differential systems, Springer-Verlag, 1991.

    Google Scholar 

  4. L. Bushnell, D. Tilbury, and S.S. Sastry, Extended Goursat normal forms with applications to nonholonomic motion planning, Proceedings of the IEEE Conference on Decision and Control (San Antonio, Texas), 1993, 3447–3452.

    Google Scholar 

  5. Steering three-input chained form nonholonomic systems using sinusoids: The fire truck example, International Journal of Robotics Research 14 (1995), no. 4, 366–381.

    Article  Google Scholar 

  6. B. Charlet, J. Levine, and R. Marino, Sufficient conditions for dynamic state feedback linearization, SIAM Journal of Control and Optimization 29 (1991), no. 1, 38–57.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Chatila, Mobile robot navigation: Space modeling and decisional processes, Robotics Research: The Third International Symposium (O. Faugeras and G. Giralt, eds.), MIT Press, 1986, 373–378.

    Google Scholar 

  8. M. Fliess, J. Levine, P. Martin, AND P. Rouchon, Sur les systèmes nonlinéaires difftentiellement plats, C. R. Acad. Sci. Paris 315 (1992), 619–624.

    MathSciNet  MATH  Google Scholar 

  9. Towards a new differential geometric setting in nonlinear control, Proc. Internat. Geometrical Coll. (Moscow), 1993.

    Google Scholar 

  10. Flatness and defect of nonlinear systems: Introductory theory and exam- ples, International Journal of Control 61 (1995), no. 6, 1327–1361.

    Article  MathSciNet  Google Scholar 

  11. R.B. Gardner and W.F. Shadwick, The GS algorithm for exact linearization to Brunovsky normal form, IEEE Transactions on Automatic Control 37 (1992), no. 2, 224–230.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Giralt, R. Chatila, and M. Vaisset, An integrated navigation and motion control system for autonomous multisensory mobile robots, Robotics Research: The First International Symposium (Cambridge, Massachusetts) (M. Brady and R. Paul, eds.), MIT Press, Cambridge, Massachusetts, 1984, 191–214.

    Google Scholar 

  13. Phillip GRIFFITHS, Exterior differential systems and the calculus of variations, Birkhauser, 1982.

    Google Scholar 

  14. J. Hauser, S. Sastry, and P. Korotovié, Nonlinear control via approximate input-output linearization, the ball and beam example, IEEE Transactions on Automatic Control 37 (1992), no. 3, 392–398.

    Article  Google Scholar 

  15. J.E. Hauser, Approximate tracking for nonlinear systems with application to flight control, Ph.D. thesis, Department of Electrical Engineering, University of California, Berkeley, California, 1989.

    Google Scholar 

  16. T.W. Hungerford, Algebra, Springer-Verlag, 1974.

    Google Scholar 

  17. A. Isidori, Nonlinear control systems, second ed., Springer-Verlag, 1989.

    Google Scholar 

  18. A.J. Krener, A. Isidori, and W. Respondek, Partial and robust linearization by feedback, Proceedings of the IEEE Conference on Decision and Control, 1983, 126–130.

    Google Scholar 

  19. R. Marino, On the largest feedback linearizable subsystem, Systems and Control Letters 6 (1986), no. 5, 345–351.

    Article  MathSciNet  MATH  Google Scholar 

  20. J.R. Munkres, Analysis on manifolds, Addison-Wesley, 1991.

    Google Scholar 

  21. R.M. Murray, Applications and extensions of Goursat normal form to control of nonlinear systems, Proceedings of the IEEE Conference on Decision and Control, 1993, 3425–3430.

    Google Scholar 

  22. Nilpotent bases for a class of non-integrable distributions with applications to trajectory generation for nonholonomic systems, Mathematics of Control, Signals, and Systems: MCSS 7 (1995), no. 1, 58–75.

    Google Scholar 

  23. H. Nijmeijer and A.J. Schaft, Nonlinear dynamical control systems, Springer-Verlag, 1990.

    Google Scholar 

  24. C. Samson, Velocity and torque feedback control of a nonholonomic cart,International Workshop in Adaptive and Nonlinear Control: Issues in Robotics, 1990, 125–151.

    Google Scholar 

  25. W.F. Shadwick and W.M. Sluts, Dynamic feedback for classical geometries, Tech. Report FI93–CT23, The Fields Institute, Ontario, Canada, 1993.

    Google Scholar 

  26. W.M. Sluis, Absolute equivalence and its applications to control theory, Ph.D. thesis, University of Waterloo, 1992.

    Google Scholar 

  27. W.M. Sluis and D.M. Tilbury, A bound on the number of integrators needed to linearize a control system, Proceedings of the IEEE Conference on Decision and Control (New Orleans), 1995, 602–607.

    Google Scholar 

  28. W.M. Sluis, A. Banaszuk, J. Hauser, and R.M. Murray, A homotopy algorithm for approximating geometric distributions by integrable systems, Systems and Control Letters 27 (1996), no. 5, 285–291.

    Article  MathSciNet  MATH  Google Scholar 

  29. O.J. Sordalen, Conversion of the kinematics of a car with N trailers into a chained form, Proceedings of the IEEE International Conference on Robotics and Automation (Atlanta, Georgia), 1993, 382–387.

    Google Scholar 

  30. M. Spivak,Calculus on manifolds, Addison-Wesley, 1965.

    Google Scholar 

  31. A comprehensive introduction to differential geometry, second ed., vol. One, Publish or Perish, Inc., Houston, 1979.

    Google Scholar 

  32. D. Tilbury, Exterior differential systems and nonholonomic motion planning, Ph.D. thesis, University of California, Berkeley, 1994, Also available as UCB/ERL Memo, number M94/90.

    Google Scholar 

  33. D. Tilbury and A. Chelouah, Steering a three-input nonholonomic system using multirate controls, Proceedings of the European Control Conference (Groningen, The Netherlands), 1993, 1428–1431.

    Google Scholar 

  34. D. Tilbury, R. Murray, and S. Sastry, Trajectory generation for the N-trailer problem using Goursat normal form, IEEE Transactions on Automatic Control 40 (1995), no. 5, 802–819.

    Article  MathSciNet  MATH  Google Scholar 

  35. D. Tilbury and S. Sastry, The multi-steering n-trailer system: A case study of Goursat normal forms and prolongations, International Journal of Robust and Nonlinear Control 5 (1995), no. 4, 343–364.

    Article  MathSciNet  MATH  Google Scholar 

  36. D. Tilbury, O. Sordalen, L. Bushnell, and S. Sastry, A multi-steering trailer system: Conversion into chained form using dynamic feedback, IEEE Transactions on Robotics and Automation 11 (1995), no. 6, 807–818.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pappas, G.J., Lygeros, J., Tilbury, D., Sastry, S. (1998). Exterior Differential Systems in Control and Robotics. In: Baillieul, J., Sastry, S.S., Sussmann, H.J. (eds) Essays on Mathematical Robotics. The IMA Volumes in Mathematics and its Applications, vol 104. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1710-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1710-7_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7251-9

  • Online ISBN: 978-1-4612-1710-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics