Skip to main content

The Simplex Gradient and Noisy Optimization Problems

  • Chapter
Computational Methods for Optimal Design and Control

Part of the book series: Progress in Systems and Control Theory ((PSCT,volume 24))

Abstract

Many classes of methods for noisy optimization problems are based on function information computed on sequences of simplices. The Nelder-Mead, multidirectional search, and implicit filtering methods are three such methods. The performance of these methods can be explained in terms of the difference approximation of the gradient implicit in the function evaluations. Insight can be gained into choice of termination criteria, detection of failure, and design of new methods.

This research was partially supported by National Science Foundation grant #DMS–9700569.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Armijo. Minimization of functions having Lipschitz-continuous first partial derivatives, Pacific J. Math., 16:1–3, 1966.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. B. Bertsekas. On the Goldstein-Levitin-Polyak gradient projection method, IEEE Trans. Autom. Control, 21:174–184, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  3. C. G. Broyden. Quasi-Newton methods and their application to function minimization, Math. Comp., 21:368–381, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. H. Byrd, R. B. Schnabel and G. A. Schultz. Parallel quasi-Newton methods for unconstrained optimization, Math. Prog., 42:273–306, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. W. David, C. Y. Cheng, T. D. Choi, C. T. Kelley and J. Gablonsky. Optimal design of high speed mechanical systems, Tech. Rep. CRSC-TR97–18, North Carolina State University, Center for Research in Scientific Computation, July 1997. Mathematical Modeling and Scientific Computing, to appear.

    Google Scholar 

  6. J. W. David, C. T. Kelley and C. Y. Cheng. Use of an implicit filtering algorithm for mechanical system parameter identification. SAE Paper 960358, 1996 SAE International Congress and Exposition Conference Proceedings, Modeling of CI and SI Engines, 189–194.

    Book  Google Scholar 

  7. J. E. Dennis and R. B. Schnabel. Numerical Methods for Nonlinear Equations and Unconstrained Optimization, no. 16 in Classics in Applied Mathematics, SIAM, Philadelphia, 1996.

    Google Scholar 

  8. J. E. Dennis and V. Torczon. Direct search methods on parallel machines, SIAM J. Optim., 1:448–474, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. V. Fiacco and G. P. McCormick. Nonlinear Programming, John Wiley and Sons, New York, 1968.

    MATH  Google Scholar 

  10. S. J. Fortune, D. M. Gay, B. W. Kernighan, O. Landron, R. A. Valenzuela and M. H. Wright. WISE design of indoor wireless systems, IEEE Computational Science and Engineering, Spring (1995), 58–68.

    Google Scholar 

  11. P. Gilmore. An Algorithm for Optimizing Functions with Multiple Minima, PhD thesis, North Carolina State University, Raleigh, North Carolina, 1993.

    Google Scholar 

  12. P. Gilmore and C. T. Kelley. An implicit filtering algorithm for optimization of functions with many local minima, SIAM J. Optim., 5:269–285, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Gilmore, C. T. Kelley, C. T. Miller and G. A. Williams. Implicit filtering and optimal design problems: Proceedings of the workshop on optimal design and control, Blacksburg VA,April 8–9, 1994, in Optimal Design and Control, J. Borggaard, J. Burkhardt, M. Gunzburger, and J. Peterson, eds., vol. 19 of Progress in Systems and Control Theory, Birkhäuser, Boston, 159176, 1995.

    Google Scholar 

  14. C. T. Kelley. Detection and remediation of stagnation in the Nelder-Mead algorithm using a sufficient decrease condition, Tech. Rep. CRSC-TR97–2, North Carolina State University, Center for Research in Scientific Computation, January 1997. Submitted for Publication.

    Google Scholar 

  15. J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright. Convergence properties of the Nelder-Mead simplex algorithm in low dimensions, Tech. Rep. 96–4–07, AT&T Bell Laboratories, April 1996.

    Google Scholar 

  16. D. Q. Mayne and E. Polak. Nondifferential optimization via adaptive smoothing, J. Optim. Theory & Appl., 43:601–613, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  17. K. I. M. McKinnon. Convergence of the Nelder-Mead simplex method to a non-stationary point, tech. rep., Department of Mathematics and Computer Science, University of Edinburgh, Edinburgh, 1996.

    Google Scholar 

  18. J. A. Nelder and R. Mead. A simplex method for function minimization, Comput. J., 7:308–313, 1965.

    Article  MATH  Google Scholar 

  19. D. Stoneking, G. Bilbro, R. Trew, P. Gilmore and C. T. Kelley. Yield optimization using a GaAs process simulator coupled to a physical device model, IEEE Transactions on Microwave Theory and Techniques, 40:1353–1363, 1992.

    Article  Google Scholar 

  20. D. E. Stoneking, G. L. Bilbro, R. J. Trew, P. Gilmore and C. T. Kelley. Yield optimization using a GaAs process simulator coupled to a physical device model, in Proceedings IEEE/Cornell Conference on Advanced Concepts in High Speed Devices and Circuits, IEEE, 374–383, 1991.

    Google Scholar 

  21. V. Torczon. On the convergence of the multidimensional direct search, SIAM J. Optim., 1:123–145, 1991.

    MathSciNet  MATH  Google Scholar 

  22. V. Torczon. On the convergence of pattern search algorithms, SIAM J. Optim., 7:1–25, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  23. T. A. Winslow, R. J. Trew, P. Gilmore and C. T. Kelley. Doping profiles for optimum class B performance of GaAs mesfet amplifiers, in Proceedings IEEE/Cornell Conference on Advanced Concepts in High Speed Devices and Circuits, IEEE, 188–197, 1991.

    Google Scholar 

  24. T. A. Winslow, R. J. Trew, P. Gilmore and C. T. Kelley. Simulated performance optimization of GaAs MESFET amplifiers, in Proceedings IEEE/Cornell Conference on Advanced Concepts in High Speed Devices and Circuits, IEEE, 393–402,1991.

    Google Scholar 

  25. S. K. Zavriev. On the global optimization properties of finite-difference local descent algorithms, J. Global Optimization, 3:67–78, 1993.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bortz, D.M., Kelley, C.T. (1998). The Simplex Gradient and Noisy Optimization Problems. In: Borggaard, J., Burns, J., Cliff, E., Schreck, S. (eds) Computational Methods for Optimal Design and Control. Progress in Systems and Control Theory, vol 24. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1780-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1780-0_5

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7279-3

  • Online ISBN: 978-1-4612-1780-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics