Skip to main content

P2 Receptor Modeling and Identification of Ligand Binding Sites

  • Chapter
The P2 Nucleotide Receptors

Part of the book series: The Receptors ((REC))

Abstract

As of now, seven subtypes of P2X receptors and four subtypes of P2Y receptors have been cloned and functionally identified. Analysis of the predicted amino acid sequences of these structurally diverse subtypes of nucleotide receptors has allowed construction of models that have aided in two- and three-dimensional visualization of P2X and P2Y receptors, respectively. Based on these models and on site-directed mutagenesis studies primarily with P2Y receptors, the ligand binding site of P2 receptors is being delineated. In this chapter, we present the current information on P2X and P2Y receptor structures and discuss the potential for amino acids in these receptors to interact with the nucleotide ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alonso-Torre, S. R. and Trautmann, A. (1993) Calcium responses elicited by nucleotides in macrophages. Interaction between two subtypes. J. Biol. Chem. 268, 18, 640–718, 647.

    Google Scholar 

  • Balcar, V. J., Li, Y., Killinger, S., and Benett, M. R. (1995) Autoradiography of P2X ATP receptors in the rat brain. Br. J. Pharmacol. 115, 302–306.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin, J. M. (1993) The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 12, 1693–1703.

    PubMed  CAS  Google Scholar 

  • Ballesteros, J. A. and Weinstein, H. (1995) Integrated methods for the construction of three dimensional models and computational probing of structure-function relations in G-protein coupled receptors. Meth. Neurosci. 25, 366–428.

    Article  CAS  Google Scholar 

  • Bo, X. and Burnstock, G. (1993) Triphosphate, the key structure of the ATP molecule responsible for interaction with P2x-purinoceptors. Gen. Pharmacol. 24, 637–640.

    Article  PubMed  CAS  Google Scholar 

  • Brake, A. J., Wagenbach, M. J., and Julius, D. (1994) New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371, 519–523.

    Article  PubMed  CAS  Google Scholar 

  • Buell, G., Michel, A. D., Lewis, C., Collo, G., Humphrey, P. P., and Surprenant, A. (1996) P2X1 receptor activation in HL60 cells. Blood 87, 2659–2664.

    PubMed  CAS  Google Scholar 

  • Chou, P. Y. and Fasman, G. D. (1974) Prediction of protein conformation. Biochem. 13, 222–245.

    Article  CAS  Google Scholar 

  • de Vos, A. M., Ultsch, M., and Kossiakoff, A. A. (1992) Human growth hormone an extracellular domain of its receptor: crystal structure of the complex. Science 255, 306–312.

    Article  PubMed  Google Scholar 

  • Durell, S. R. and Guy, H. R. (1992) Atomic scale structure and functional models of voltage-gated potassium channels. Biophys. J. 62, 238–259.

    Article  PubMed  CAS  Google Scholar 

  • Elling, C. E., Møller-Nielsen, S., and Schwartz, T. W. (1995) Conversion of antagonist binding site to metal-ion site in the tachykinin NK-1 receptor. Nature 374, 74–77.

    Article  PubMed  CAS  Google Scholar 

  • Emini, E. A., Hughes, J. V., Perlow, D. S., and Boger, J. (1985) Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J. Virol. 55, 836–839.

    PubMed  CAS  Google Scholar 

  • Erb, L., Garrad, R., Wang, Y., Quinn, T., Turner, J. T., and Weisman, G. A. (1995) Site-directed mutagenesis of P2U purinoceptors: positively charged amino acids in transmembrane helices 6 and 7 affect agonist potency and specificity. J. Biol. Chem. 270, 4185–4188.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, B., Boyer, J. L., Hoyle, C. H. V., Ziganshin, A. U., Brizzolara, A. L., Knight, G. E., Zimmet, J., Burnstock, G., Harden, T. K., and Jacobson, K. A. (1993) Identification of potent, selective P2Y-purinoceptor agonist structure-activity relationship for 2-thioether derivatives of adenosine 5′-triphosphate. J. Med. Chem. 36, 3937–3946.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, C. M., Wang, C. D., Robinson, D. A., Gocayne, J. D., and Venter, J. C. (1989) Site-directed mutagenesis of ml muscarinic acetylcholine receptors: conserved aspartic acids play important roles in receptor function. Mol. Pharmacol. 236, 840–847.

    Google Scholar 

  • Gantz, I., DelValle, J., Wang, L. D., Tashiro, T., Munzert, G., Guo, Y. J., Konda, Y., and Yamada, T. (1992) Molecular basis for the interaction of histamine with the histamine H2 receptor. J. Biol. Chem. 267, 20, 840–920, 843.

    Google Scholar 

  • Garnier, J., Osguthorpe D. J., and Robson, B. (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120, 97–120.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, J. L. (1986) Extracellular ATP: effects, sources, and fate. Biochem. J. 233, 309–319.

    PubMed  CAS  Google Scholar 

  • Hibert, M. F., Trumpp-Kallmeyer, S., Bruinvels, A., and Hoflack, J. (1991) Three-dimensional models of neurotransmitter G-binding protein-coupled receptors. Mol. Pharmacol. 40, 8–15.

    PubMed  CAS  Google Scholar 

  • Ho, B. Y., Karschin, A., Branchek, T., Davidson, N., and Lester, H. A. (1992) The role of conserved aspartate and serine residues in ligand binding and in function of the 5-HT1A receptor: a site-directed mutation study. FEBS Lett. 312, 259–262.

    Article  PubMed  CAS  Google Scholar 

  • Horstman, D. A., Brandon, S., Wilson, A. L., Guyer, C. A., Cragoe, E. J., and Limbird, L. E. (1990) An aspartate conserved among G-protein receptors confers allosteric regulation of α2-adrenergic receptors by sodium. J. Biol. Chem. 265, 21, 590–621, 595.

    Google Scholar 

  • Ijzerman, A. P., van der Wenden, E. M., van Galen, P. J. M., and Jacobson, K. A. (1994) Molecular modeling of adenosine receptors — the ligand binding site on the rat adenosine A2a receptor. Eur. J. Pharmacol. 268, 95–104.

    Article  PubMed  CAS  Google Scholar 

  • Javitch, J. A., Fu, D., Chen, J., and Karlin, A. (1995) Mapping the binding-site crevice of the dopamine D2 receptor by the substituted-cysteine accessibility method. Neuron 14, 825–831.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. Wess, J., van Rhee, A. M., Schöneberg, T., and Jacobson, K. A. (1995) Site-directed mutagenesis identifies residues involved in ligand recognition in the human A2a adenosine receptor. J. Biol. Chem. 270, 13, 987–1013, 997.

    Google Scholar 

  • Klotz, K. N., Lohse, M. J., and Schwabe, U. (1988) Chemical modification of A1 adenosine receptors in rat brain membranes. Evidence for histidine in different domains of the ligand binding site. J. Biol. Chem. 263, 17, 522–617, 526.

    Google Scholar 

  • Kubo, T., Fukuda, K., Mikama, A., Maeda, A., Takahashi, H., Mishina, M., Haga, Y., Ichiyama, A., Kangawa, K., Kajima, M., Matsuo, H., Hirose, T., and Numa, T. (1986) Cloning, sequencing and expressing of complementary DNA encoding the muscarinic acetylcholine receptor. Nature 323, 411–416.

    Article  PubMed  CAS  Google Scholar 

  • Kurtenbach, E., Curtis, C. A., Pedder, E. K., Aitken, A., Harris, A. C., and Hulme, E. C. (1990) Muscarinic acetylcholine receptors. Peptide sequencing identifies residues involved in antagonist binding and disulfide bond formation. J. Biol. Chem. 265, 13, 702–813, 708.

    Google Scholar 

  • Kyte, J. and Doolittle, R. F. (1982) A simple method for displaying the hydrophobic character of a protein. J. Mol. Biol. 157, 105–132.

    Article  PubMed  CAS  Google Scholar 

  • Lazarowski, E. R., Watt, W. C., Stutts, M. J., Brown, H. A., Boucher, R. C., and Harden, T. K. (1996) Enzymatic synthesis of UTPγS, a potent hydrolysis resistant agonist of P2U-purinoceptors. Br. J. Pharmacol. 117, 203–209.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, C., Neidhart, S., Holy, C., North, R. A., Buell, G., and Surprenant, A. (1995) Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 377, 432–435.

    Article  PubMed  CAS  Google Scholar 

  • Lipkind, G. M., Kanck, D. A., and Fozzard, H. A. (1995) A structural motif for the voltage-gated potassium channel pore. Proc. Natl. Acad. Sci. USA 92, 9215–9219.

    Article  PubMed  CAS  Google Scholar 

  • Lustig, K. D., Shiau, A. K., Brake, A. J., and Julius, D. (1993) Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc. Natl. Acad. Sci. USA 90, 5113–5117.

    Article  PubMed  CAS  Google Scholar 

  • Lustig, K. D., Sportiello, M. G., Erb, L., and Weisman, G. A. (1992) A nucleotide receptor in vascular endothelial cells is specifically activated by the fully ionized forms of ATP and UTP. Biochem. J. 284, 733–739.

    PubMed  CAS  Google Scholar 

  • MacArthur, M. W. and Thornton, J. M. (1991) Influence of proline residues on protein conformation. J. Mol. Biol. 218, 397–412.

    Article  PubMed  CAS  Google Scholar 

  • Mansour, A., Meng, F., Meador, W. J., Taylor, L. P., Civelli, O., and Akil, H. (1992) Site-directed mutagenesis of the human dopamine D2 receptor. Eur. J. Pharmacol. 227, 205–214.

    Article  PubMed  CAS  Google Scholar 

  • Michel, A. D. and Humphrey, P. P. (1994) Effects of metal cations on (3H)alpha,beta-methylene ATP binding in rat vas deferens. Naunyn-Schmiedeberg’s Arch. Pharmacol. 350, 113–122.

    CAS  Google Scholar 

  • Oksenberg, D., Masters, S. A., O’Dowd, B. F., Jin, H., Havlik, S., Peroutka, S. J., and Ashkenazi A. (1992) A single amino-acid difference confers major pharmacological variation between human and rodent 5-HT1B receptors. Nature 360, 161–163.

    Article  PubMed  CAS  Google Scholar 

  • Perlman, J. H., Laakkonen, L., Osman, R., and Gershengorn, M. C. (1994) A model of the thyrotropin-releasing hormone (TRH) receptor binding pocket. Evidence for a second direct interaction between transmembrane helix 3 and TRH. J. Biol. Chem. 269, 23, 383–423, 386.

    Google Scholar 

  • Probst, W. C., Snyder, L. A., Schuster, D. I., Brosius, J., and Sealfon, S. C. (1992) Sequence alignment of the G-protein coupled receptor family. DNA Cell Biol. 11, 1–20.

    Article  PubMed  CAS  Google Scholar 

  • Rossmann, M. G., Moras, D., and Olsen, K. W. (1974) Chemical and biological evolution of nucleotide-binding protein. Nature 250, 194–199.

    Article  PubMed  CAS  Google Scholar 

  • Schertier, G. F., Villa, C., and Henderson, R. (1993) Projection structure of rhodopsin. Nature 362, 770–772.

    Article  Google Scholar 

  • Strader, C. D., Sigal, I. S., Candelore, M. R., Rands, E., Hill, W. S., and Dixon, R. A. (1988) Conserved aspartic acid residues 79 and 113 of the beta-adrenergic receptor have different roles in receptor function. J. Biol. Chem. 263, 10, 267–310, 271.

    Google Scholar 

  • Strader, C. D., Gaffney, T., Sugg, E. E., Candelore, M. R., Keys, R., Patchett, A. A., and Dixon, R. A. (1991) Allele-specific activation of genetically engineered receptors. J. Biol. Chem. 266, 5–8.

    PubMed  CAS  Google Scholar 

  • Strader, C. D., Fong, T. M., Tota, M. R., Underwood, D., and Dixon, R. A. F. (1994) Structure and function of G protein-coupled receptors. Ann. Rev. Biochem. 63, 101–132.

    Article  PubMed  CAS  Google Scholar 

  • Surprenant, A., Buell, G., and North, R. A. (1995) P2X receptors bring new structure to ligand-gated ion channels. Tr. Neurosci. 18, 224–229.

    Article  CAS  Google Scholar 

  • Suryanarayana, S., Daunt, D. A., von Zastrow, M., and Kobilka, B. K. (1991) A point mutation in the seventh hydrophobic domain of the alpha 2 adrenergic receptor increases its affinity for a family of beta receptor antagonists. J. Biol. Chem. 266, 15, 488–515, 492.

    Google Scholar 

  • Valera, S., Hussy, N., Evans, R. J., Adami, N., North, R. A., Surprenant, A., and Buell, G. (1994) New class of ligand-gated ion channel defined by P2X receptor for extracellular ATP. Nature 371, 516–519.

    Article  PubMed  CAS  Google Scholar 

  • van Rhee, A. M., Fischer, B., van Galen, P. J. M., and Jacobson, K. A. (1995) Modelling the P2Y purinoceptor using rhodopsin as template. Drug Design Discovery 13, 133–154.

    Google Scholar 

  • van Rhee, A. M. and Jacobson, K. A. (1996) Molecular architecture of G protein-coupled receptors. Drug Dev. Res. 37, 1–38.

    Article  PubMed  Google Scholar 

  • von Heijne (1991) Proline kinks in transmembrane α-helices. J. Mol. Biol. 218, 499–503.

    Article  Google Scholar 

  • Walker, J. E., Saraste, M., Runswick, M. J., and Gay, N. J. (1982) Distantly related sequences in the alpha-and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945–951.

    PubMed  CAS  Google Scholar 

  • Wang, C. D., Gallaher, T. K., and Shih, J. C. (1993) Site-directed mutagenesis of the serotonin 5-hydroxytryptamine 2 receptor: Identification of amino acids necessary for ligand binding and receptor activation. Mol. Pharmacol. 43, 931–940.

    PubMed  CAS  Google Scholar 

  • Wess, J., Gdula, D., and Brann, M. R. (1991) Site-directed mutagenesis of the m3 muscarinic receptor: identification of a series of threonine and tyrosine residues involved in agonist but not antagonist binding. EMBO J. 10, 3729–3734.

    PubMed  CAS  Google Scholar 

  • Wess, J., Maggio, R., Palmer, J. R., and Vogel, Z. (1992) Role of conserved threonine and tyrosine residues involved in acetylcholine binding and muscarinic receptor activation. A study with m3 muscarinic receptor point mutants. J. Biol. Chem. 267, 19, 313–419, 319.

    Google Scholar 

  • Williams, K. A. and Deber, C. M. (1991) Proline residues in transmembrane helices: structural or dynamic role? Biochem. 30, 8919–8923.

    Article  CAS  Google Scholar 

  • Zhou, W., Flanagan, C., Ballesteros, J. A., Konvicka, K., Davidson, J. S., Weinstein, H., Millar, R. P., and Sealfon, S. C. (1994) A reciprocal mutation supports helix2 and helix7 proximity in the gonadotropin-releasing hormone receptor. Mol. Pharmacol. 45, 165–170.

    PubMed  CAS  Google Scholar 

  • Zhu, G., Wu, L. H., Mauzy, C., Egloff, A. M., Mirzadegan, T., and Chung, F. Z. (1992) Replacement of lysine-181 by aspartic acid in the third transmembrane region of endothelin type B receptor reduces its affinity to endothelin peptides and sarafotoxin 6c without affecting G protein coupling. J. Cell. Biochem. 50, 159–164.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

van Rhee, A.M., Jacobson, K.A., Garrad, R., Weisman, G.A., Erb, L. (1998). P2 Receptor Modeling and Identification of Ligand Binding Sites. In: Turner, J.T., Weisman, G.A., Fedan, J.S. (eds) The P2 Nucleotide Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1800-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1800-5_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-7289-2

  • Online ISBN: 978-1-4612-1800-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics