Skip to main content

Improving Fermentation Performance of Recombinant Zymomonas in Acetic Acid-Containing Media

  • Chapter
Biotechnology for Fuels and Chemicals

Part of the book series: Applied Biochemistry and Biotechnology ((ABAB))

Abstract

In the production of ethanol from lignocellulosic biomass, the hydrolysis of the acetylated pentosans in hemicellulose during pretreatment produces acetic acid in the prehydrolysate. The National Renewable Energy Laboratory (NREL) is currently investigating a simultaneous saccharification and cofermentation (SSCF) process that uses a proprietary metabolically engineered strain of Zymomonas mobilis that can coferment glucose and xylose. Acetic acid toxicity represents a major limitation to bioconversion, and cost-effective means of reducing the inhibitory effects of acetic acid represent an opportunity for significant increased productivity and reduced cost of producing fermentation fuel ethanol from biomass. In this study, the fermentation performance of recombinant Z. mobilis 39676:pZB4L, using a synthetic hardwood prehydrolysate containing 1% (w/v) yeast extract, 0.2% KH2PO4, 4% (w/v) xylose, and 0.8% (w/v) glucose, with varying amounts of acetic acid was examine. To minimize the concentration of the inhibitory undissociated form of acetic acid, the pH was controlled at 6.0. The final cell mass concentration decreased linearly with increasing level of acetic acid over the range 0-0.75% (w/v), with a 50% reduction at about 0.5% (w/v) acetic acid. The conversion efficiency was relatively unaffected, decreasing from 98 to 92%. In the absence of acetic acid, batch fermentations were complete at 24 h. In a batch fermentation with 0.75% (w/v) acetic acid, about two-thirds of the xylose was not metabolized after 48 h. In batch fermentations with 0.75% (w/v) acetic acid, increasing the initial glucose concentration did not have an enhancing effect on the rate of xylose fermentation. However, nearly complete xylose fermentation was achieved in 48 h when the bioreactor was fed glucose. In the fed-batch system, the rate of glucose feeding (0.5 g/h) was designed to simulate the rate of cellulolytic digestion that had been observed in a modeled SSCF process with recombinant Zymomonas. In the absence of acetic acid, this rate of glucose feeding did not inhibit xylose utilization. It is concluded that the inhibitory effect of acetic acid on xylose utilization in the SSCF biomass-to-ethanol process will be partially ameliorated because of the simultaneous saccharification of the cellulose.

Author to whom all correspondence and reprint requests should be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhang, M., Franden, M. A., Newman, M., McMillan, J., Finkelstein, M., and Picataggio, S. (1995), Appl. Biochem. Biotechnol. 51/52, 527–536.

    Article  CAS  Google Scholar 

  2. Picataggio, S. K., Zhang, M., and Finkelstein, M. (1994), in Enzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. A., eds., American Chemical Society, Washington, DC, ACS Symposium Series 566, pp. 342–362.

    Chapter  Google Scholar 

  3. Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. K. (1995), Science, 267, 240–243.

    Article  CAS  Google Scholar 

  4. Picataggio, S. K., Zhang, M., Eddy, C. K., Deanda, K. A., and Finkelstein, M. (1996), US Patent 5,514,583.

    Google Scholar 

  5. Wright, J. D. (1988), Chem. Eng. Prog. 84, 62–74.

    CAS  Google Scholar 

  6. Grethlein, H. E. (1985), BioTechnology 3, 155–160.

    Article  CAS  Google Scholar 

  7. Grethlein, H. E., Allen, D. C, and Converse, A. O. (1984), Biotech. Bioeng. 26, 1498–1505.

    Article  CAS  Google Scholar 

  8. Torget, R., Werdene, P., Himmel, M., and Grohmann, K. (1990), Appl. Biochem. Biotechnol. 24/25, 115–126.

    Article  Google Scholar 

  9. Grohmann, K., Himmel, M., Rivard, C., Tucker, M., Baker, T. Torget, R., and Graboski, M. (1984), Biotechnol Bioeng. Symp. 14, 139–157.

    Google Scholar 

  10. Kong, F., Engler, C. R., and Soltes, E. (1992), Appl Biochem. Biotechnol. 34/35, 23–35.

    Article  Google Scholar 

  11. Timell, T. E. (1964), Adv. Carbohydr. Chem. 19, 247–302.

    Article  CAS  Google Scholar 

  12. Lawford, H. G. and Rousseau, J. D. (1993), in Energy from Biomass and Wastes XVI. (1992) Klass, D. L., ed., Institute of Gas Technology, Chicago, pp. 559–597.

    Google Scholar 

  13. Lawford, H. G. and Rousseau, J. D. (1993), Appl. Biochem. Biotechnol. 39/40, 667–685.

    Article  Google Scholar 

  14. McMillan, J. D. (1994), in Enzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. A., eds., American Chemical Society, Washington, DC, ACS Symposium Series 566, pp. 411–437.

    Chapter  Google Scholar 

  15. Freese, E., Sheu, C. W., and Galliers, E. (1973), Nature 241, 321–326.

    Article  CAS  Google Scholar 

  16. Booth, I. R. (1985), Microbiol. Rev. 49, 63–91.

    Google Scholar 

  17. Prior, B. A., Killan, S. G., and du Preez, J. C. (1989), Process Biochem. 24, 21–32.

    CAS  Google Scholar 

  18. Lawford, H. G. and Rousseau, J. D. (1993), Appl. Biochem. Biotechnol. 39/40, 301–322.

    Article  Google Scholar 

  19. Lawford, H. G. and Rousseau, J. D. (1994), Appl. Biochem. Biotechnol 45/46, 437–448.

    Article  Google Scholar 

  20. Lawford, H. G. and Rousseau, J. D. (1991), Biotechnol. Letts. 13, 191–196.

    Article  CAS  Google Scholar 

  21. Lawford, H. G. and Rousseau, J. D. (1993), in: Energy from Biomass and Wastes XVI, Klass, D. L., ed., Institute of Gas Technology, Chicago, IL, pp. 559–597.

    Google Scholar 

  22. Lawford, H. G. and Rousseau, J. D. (1992), Appl. Biochem. Biotechnol. 34/35, 185–204.

    Article  Google Scholar 

  23. Lawford, H. G. and Rousseau, J. D. (1993), Appl. Biochem. Biotechnol. 39/40, 687–699.

    Article  Google Scholar 

  24. Lawford, H. G., Rousseau, J. D., and McMillan, J. D. (1997), Appl. Biochem. Biotechnol. 63-65, 269–286.

    Article  CAS  Google Scholar 

  25. Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C. E. (1989), Appl. Biochem. Biotechnol. 20/21, 391–401.

    Article  Google Scholar 

  26. Hinman, N. D., Schell, D. J., Riley, C. J., Bergeron, P. W., and Walter, P. J. (1992), Appl. Biochem. Biotechnol. 34/35, 639–649.

    Article  Google Scholar 

  27. Lynd, L. R. (1990), Appl. Biochem. Biotechnol. 24/25, 695–719.

    Article  Google Scholar 

  28. Picataggio, S. K., Eddy, C., Deanda, K., Franden, M. A., Finkelstein, M., and Zhang, M. (1996), Seventeenth Symposium on Biotechnology for Fuels & Chemicals (Paper #9).

    Google Scholar 

  29. Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1998), Appl. Biochem. Biotechnol., (19th Symp) 70-72.

    Google Scholar 

  30. Goodman, A. E., Rogers, P. L., and Skotnicki, M. L. (1982), Appl. Environ. Microbiol. 44, 496–498.

    CAS  Google Scholar 

  31. Lawford, H. G. and Ruggiero, A. (1990), Biotechnol. Appl. Biochem. 12, 206–211.

    CAS  Google Scholar 

  32. Lawford, H. G., Holloway, P., and Ruggiero, A. (1988), Biotechnol. Letts. 10, 809–814.

    Article  CAS  Google Scholar 

  33. DiMarco, A., and Romano, A. H. (1985), Appl. Environ. Microbiol. 49, 151–157.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lawford, H.G., Rousseau, J.D. (1998). Improving Fermentation Performance of Recombinant Zymomonas in Acetic Acid-Containing Media. In: Finkelstein, M., Davison, B.H. (eds) Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1814-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1814-2_16

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-7295-3

  • Online ISBN: 978-1-4612-1814-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics