Skip to main content

Viscous Boundary Layers and High Frequency Oscillations

  • Conference paper
Singularities and Oscillations

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 91))

Abstract

This paper concerns small viscosity perturbations of mixed semilinear (symmetric first order) hyperbolic systems, in several dimensions. The problem is to describe the (smooth and local in time) solution uE of the Cauchy-Dirichlet problem for the perturbed system, as the viscosity parametere >0 goes to zero. A “boundary layer” forms in the vicinity of the boundary, where the solutionuEdevelop a singularity (with respect toe.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. BardosProblèmes aux limites pour les équations du premier ordreAnn. Sci. Ecol. Norm. Sup. 3, (1970), 185–233.

    MathSciNet  MATH  Google Scholar 

  2. C. Bardos, D. Brézis, H. BrézisPerturbations singulières et prolongements maximaux d’opérateurs positifsArch. Rational Mech. Anal. 53, (1973), 69100.

    Article  Google Scholar 

  3. C. Bardos, J. RauchMaximal positive boundary value problems as limits of singular perturbation problemsTrans. Amer. Math. Soc., 270, (1982), 377–408.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. BézardProblème aux limites pour le système de Vlasov-MaxwellexposéN.4, séminaire Equations aux Dérivées Partielles de l’Ecole Polytechnique, 1992–93, preprint n.1029, Ecole Polytechnique, 1992.

    Google Scholar 

  5. K.O. FriedrichsWell-posed problems of mathematical physicsMimeographed Lectures Notes, New-York University.

    Google Scholar 

  6. K.O. FriedrichsSymmetric positive systems of differential equationsComm. Pure Appl. Math.7, (1954), 345–392.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Gisclon, D. SerreEtude des conditions aux limites pour un système strictement hyperbolique via l’approximation paraboliqueC. R. Acad. Sci. Paris, t 319, Série I, (1994), 377–382.

    MathSciNet  MATH  Google Scholar 

  8. O. GutsPerturbations visqueuses de problemes mixtes hyperboliques et couches limitesAnn. Inst. Fourier, Grenoble, 45, 4, (1995), 973–1006.

    Article  MathSciNet  Google Scholar 

  9. O.GutsCouches limites pour des problèmes mixtes hyperboliques, exposé N.17, séminaire Equations aux Dérivées Partielles de l’Ecole Polytechnique, 1993–94.

    Google Scholar 

  10. O. GutsProlème mixte hyperbolique quasilinéaire caractéristiqueComm. Part. Diff. Equa., 15 (5), (1990), 595–645.

    Article  Google Scholar 

  11. A.M. IL’INMatching of asymptotic expansions of solutions of boundary value problemsTranslations of Mathematical Monographs, vol 102, Amer. Math. Soc., Providence, R. I., 1992.

    Google Scholar 

  12. J.-L. Jolt, J. RauchJustification of multidimensional single phase semilinear geometric opticsTrans. Amer. Math. Soc. 330, (1992), 599–624.

    Article  MathSciNet  Google Scholar 

  13. T. KATONonstationary flows of viscous and ideal fluids inR3J. Funct. Anal., 9, (1972),296–305.

    Article  MATH  Google Scholar 

  14. H-O. Kreiss, J. LorenzInitial boundary value problems and the Navier-Stokes equationsPure and Applied Mathematics, vol. 136, Academic Press, London, 1989.

    Google Scholar 

  15. S. Klainerman, A. MajdaSingular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluidsComm. Pure Appl. Math., 34 (1981), 481–524.

    Article  MathSciNet  MATH  Google Scholar 

  16. N. LevinsonThe first boundary value problem for eDu+A(x y)u x +B(x y)u y + C(x y)u = D(x, y) for small e, Ann. Math. 5, (1950), 428–445.

    Article  MathSciNet  Google Scholar 

  17. J-L. LIONSPerturbations singulières dans les problèmes aux limites et en contrôle optimalLecture Notes in Math., N. 323, Springer-Verlag, 1973.

    Google Scholar 

  18. P. Lax, R. PhilipsLocal boundary conditions for dissipative symmetric linear differential operatorsComm. Pure Appl. Math., 13, (1960), 427–455.

    Article  MathSciNet  MATH  Google Scholar 

  19. O.A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural’ceva, Linearand quasi-linear equations of parabolic typeMoscou 1967, and Trans. Math. Monographs, vol. 23, Amer. Math. Soc., Providence, RI, 1968.

    Google Scholar 

  20. O. OleinikLinear equations of second orderMat. Sb. 69, (1966), 111–140,and Amer. Math. Soc. Transl. Sries 2, 65, (1967), 167–200.

    Google Scholar 

  21. J. RauchSymmetric positive systems with boundary characteristic of constant multiplicityTrans. Amer. Math. Soc. 291, (1985), 167–185.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Rauch, F. MasseyDifferentiability of solutions to hyperbolic initial boundary value problemsTrans. Amer. Math. Soc. 189, (1974), 303–318.

    MathSciNet  MATH  Google Scholar 

  23. J. Rauch, M. ReedBounded stratified and striated solutions of hyperbolic systems,Nonlinear Partial Differential Equations and their Applications, vol.9, Pitman Res. Notes in Math., 181, Longman Scientific and Technical, Harlow, (1988), 334–351.

    Google Scholar 

  24. M.I. Vishik, L.A. LyusternikAsymptotic behavior of solutions of linear differential equations with large or quickly changing coefficients and boundary conditionRussian Math. Surveys 4, (1960), 23–92.

    Article  MathSciNet  Google Scholar 

  25. M.I. Vishik, L.A. Lyusternik, Regular degeneration and boundary layers for linear differential equations with small parameter, Uspek. Math. Nauk. 12 (1957), 3–122, Amer. Math. Soc. Trans’.(2) 20 (1962), 239–264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this paper

Cite this paper

Gues, O. (1997). Viscous Boundary Layers and High Frequency Oscillations. In: Rauch, J., Taylor, M. (eds) Singularities and Oscillations. The IMA Volumes in Mathematics and its Applications, vol 91. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1972-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1972-9_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7362-2

  • Online ISBN: 978-1-4612-1972-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics