Skip to main content

On Discrete Stokes and Navier—Stokes Equations in the Plane

  • Chapter
Clifford Algebras

Part of the book series: Progress in Mathematical Physics ((PMP,volume 34))

Abstract

The main goal of the paper is to apply the theory of discrete analytic functions to the solution of Dirichlet problems for the Stokes and Navier—Stokes equations, respectively. The Cauchy—Riemann operator will be approximated by certain finite difference operators. Approximations of the classical T-operator as well as for the Bergman projections are constructed in such a way that the algebraic properties of the operators from complex function theory remain valid. This is used to approximate the solutions to the boundary value problems by adapted finite difference schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boor, C, and Höllig, K.; Riemenschneider, S.: Fundamental solutions for multivariate difference equations, Amer. J. Math.

    Article  MathSciNet  MATH  Google Scholar 

  2. Deeter, C. R., and Lord, M. E.: Further theory of operational calculus on discrete analytic functions, J. Math. Anal Appl. 26(1969), 92-113.

    Article  MathSciNet  MATH  Google Scholar 

  3. Duffin, R.J.: Discrete potential theory, Duke Math. J. 20 (1953), 233–251.

    Article  MathSciNet  MATH  Google Scholar 

  4. Duffin, R. J.: Basic properties of discrete analytic functions, Duke Math. J. 23 (1956), 335–363.

    Article  MathSciNet  MATH  Google Scholar 

  5. Ferrand, J.: Fonctions préharmonique et fonctions préholomorphes, Bulletin des Sciences Mathématiques, sec. series, vol. 68(1944), 152–180.

    MathSciNet  MATH  Google Scholar 

  6. Gürlebeck, K.: Zur Berechnung von Fundamentallösungen diskreter Cauchy-Riemann-Operatoren. TAMM 74 (1994) 6, T625-T627.

    MATH  Google Scholar 

  7. Gürlebeck., and Hommel, A.: Finite difference Cauchy-Riemann operators and their fundamental solutions in the complex case. Operator Theory, vol. 142, 101–115.

    Google Scholar 

  8. Gürlebeck., and Hommel, A.: On fundamental solutions of the heat conduction difference operator, Z Anal. Anw. 13 (1994), No. 3, 425–441.

    MATH  Google Scholar 

  9. Gürlebeck., and Hommel, A.: On finite difference Dirac operators and their fundamental solutions, Advances in Applied Clifford Algebras 11 (S2) (2001), 89–106.

    Article  MathSciNet  Google Scholar 

  10. Gürlebeck., and Sprößig, W.:Quaternionic and Clifford Calculus for Engineers and Physicists, John Wiley & Sons, Chichester, 1997.

    MATH  Google Scholar 

  11. Hayabara, S.: Operational calculus on the discrete analytic functions, Math. Japon. 11 (1966), 35–65.

    MathSciNet  MATH  Google Scholar 

  12. Hommel, A.: Construction of a right inverse operator to the discrete Cauchy-Riemann operator, Progress in Analysis, Proceedings of the 3rd International ISAAC Congress, Vol. I, H. Begehr, R. Gilbert, M.W. Wong, Eds., World Scientific, New Jersey, London, Singapore, Hong Hong, 2003.

    Google Scholar 

  13. Hommel, A.: Fundamentallösungen partieller Differenzenoperatoren und die Lösung diskreter Randwertprobleme mit Hilfe von Differenzenpotentialen. Dissertation, Bauhaus-Universität Weimar, 1998.

    Google Scholar 

  14. Kravchenko, V.V., and Shapiro, M.V., Integral Representations for Spatial Models of Mathematical Physics, Research Notes in Mathematics 351, Pitman Advanced Publishing Program, London, 1996.

    MATH  Google Scholar 

  15. Maeda, F.-Y., Murakami, A., and Yamasaki, M.: Discrete initial value problems and discrete parabolic potential theory, Hiroshima Math. J. 21 (1991), 285–299.

    MathSciNet  MATH  Google Scholar 

  16. Pfeifer, E., and Rauhöft, A.: Über Grundlösungen von Differenzenoperatoren. Z Anal. Anw. 3 (1984), 227–236.

    MATH  Google Scholar 

  17. Ryabenkij, V. S.: The Method of Difference Potentials for Some Problems of Continuum Mechanics (Russian). Moscow, Nauka, 1987.

    Google Scholar 

  18. Sobolev, S.L.: Über die Eindeutigkeit der Lösung von Differenzengleichungen des elliptischen Typs. Doklady Akad. Nauk SSSR 87 (1952), No. 2, 179–182 (Russian)

    MathSciNet  MATH  Google Scholar 

  19. Sobolev, S. L.: Über eine Differenzengleichung. Doklady Akad. Nauk SSSR 87 (1952), No. 3, 341–343 (Russian)

    MathSciNet  MATH  Google Scholar 

  20. Stummel, F.: Elliptische Differenzenoperatoren unter Dirichletrandbedingungen. Math. Z. 97 (1967), 169–211.

    Article  MathSciNet  MATH  Google Scholar 

  21. Thomee, V.: Discrete interior Schauder estimates for elliptic difference operators. SIAMJ. Numer. Anal. 5 (1968), 626–645.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Birkhäuser Boston

About this chapter

Cite this chapter

Gürlebeck, K., Hommel, A. (2004). On Discrete Stokes and Navier—Stokes Equations in the Plane. In: Abłamowicz, R. (eds) Clifford Algebras. Progress in Mathematical Physics, vol 34. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2044-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2044-2_3

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-3525-1

  • Online ISBN: 978-1-4612-2044-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics