Skip to main content

Dose-Intensive Therapy with Autologous Blood Stem Cell or Bone Marrow Transplantation for Treatment of Breast Cancer

  • Chapter
Breast Cancer

Part of the book series: M.D. Anderson Solid Tumor Oncology Series ((MDA))

  • 158 Accesses

Abstract

High-dose chemotherapy and autologous bone marrow or blood stem cell transplantation is increasingly used for treatment of metastatic and high-risk regional breast cancer. This chapter summarizes the basic concepts of dose intensity, the principles of autologous bone marrow and blood stem cell transplantation, and the clinical results and future directions using this approach to breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frei E, Canellos GP. Dose, a critical factor in cancer chemotherapy. Am J Med 1980;69:585–594.

    Article  PubMed  Google Scholar 

  2. Hyrniuk WM. Average relative dose intensity and the impact on design of clinical trials. Semin Oncol 1987;14:65–74.

    Google Scholar 

  3. Armitage JO. Bone marrow transplantation. N Engl J Med 1994;330:827–838.

    Article  PubMed  CAS  Google Scholar 

  4. Champlin RE, Gale RP. The role of bone marrow transplantation in the treatment of hematologic malignancies and solid tumors: a critical review of syngeneic, autologous and allogeneic transplants. Cancer Treat Rep 1984;68:145–161.

    PubMed  CAS  Google Scholar 

  5. Brandt SJ, Peters WP, Antwater SK, et al. Effect of recombinant human granulocyte-macrophage colony-stimulating factor on hematopoietic reconstitution after high dose chemotherapy and autologous bone marrow transplantation. N Engl J Med 1988;318:869–876.

    Article  PubMed  CAS  Google Scholar 

  6. Peters WP, Rosner G, Ross M, et al. Comparative effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) on priming peripheral blood progenitor cells for use with autologous bone marrow after high-dose chemotherapy. Blood 1993;81:1709–1719.

    PubMed  CAS  Google Scholar 

  7. Korbling M, Juttner C, Henon P, et al. Autologous blood stem cell versus bone marrow transplantation. Bone Marrow Transplant 1992;10(suppl 1):144–148

    PubMed  Google Scholar 

  8. Korbling M, Dorken B, Ho AD, et al. Autologous transplantation of blood-derived hemopoietic stem cells after myeloablative therapy in a patient with Burkitt’s lymphoma. Blood 1986;67:529–532.

    PubMed  CAS  Google Scholar 

  9. Kessinger A, Armitage JO, Lamndmark JD, et al. Autologous peripheral hematopoietic stem cell transplantation restores hematopoietic function following marrow ablative therapy. Blood 1988;71:723–727.

    PubMed  CAS  Google Scholar 

  10. Elias AD, Ayash L, Anderson KC, et al. Mobilization of peripheral blood progenitor cells by chemotherapy and granulocyte-macrophage colony-stimulating factor for hematologic support after high-dose intensification for breast cancer. Blood 1992;79:3036–3044.

    PubMed  CAS  Google Scholar 

  11. Sheridan WP, Begley CG, Juttner CA, et al. Effect of peripheral-blood progenitor cells mobilised by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy. Lancet 1992;339:640–644.

    Article  PubMed  CAS  Google Scholar 

  12. Schmitz N, Linch DC, Dreger P, et al. Randomised trial of filgrastim-mobilised peripheral blood progenitor cell transplantation versus autologous bone-marrow transplantation in lymphoma patients. Lancet 1996;347:353–357.

    Article  PubMed  CAS  Google Scholar 

  13. Socinski MA, Elias A, Schnipper L, et al. Granulocyte-macrophage colony stimulating factor expands the circulating haemopoietic progenitor cell compartment in man. Lancet 1988;1:1194–1197.

    Article  PubMed  CAS  Google Scholar 

  14. Weaver A, Ryder D, Crowther D, et al. Increased numbers of long-term culture-initiating cells in the apheresis product of patients randomized to receive increasing doses of stem cell factor administered in combination with chemotherapy and a standard dose of granulocyte colony-stimulating factor. Blood 1996;88:3323–3328.

    PubMed  CAS  Google Scholar 

  15. Sudo Y, Shimazaki C, Ashihara E, et al. Synergistic effect of FLT-3 ligand on the granulocyte colony-stimulating factor-induced mobilization of hematopoietic stem cells and progenitor cells into blood in mice. Blood 1997;89:3186–3191.

    PubMed  CAS  Google Scholar 

  16. Vadhan-Raj S, Murray LJ, Bueso-Ramos C, et al. Stimulation of megakaryocyte and platelet production by a single dose of recombinant human thrombopoietin in patients with cancer. Ann Intern Med 1997;126:673–681.

    PubMed  CAS  Google Scholar 

  17. Kessinger A, Vose JM, Bierman PJ, et al. High-dose therapy and autologous peripheral stem cell transplantation for patients with bone marrow metastases and relapsed lymphoma: an alternative to bone marrow purging. Exp Hematol 1991;9:1013–1016.

    Google Scholar 

  18. Champlin RE. Peripheral blood progenitor cells: a replacement for marrow transplantation? Semin Oncol 1996;23:15–21.

    PubMed  CAS  Google Scholar 

  19. Bensinger W, Appelbaum F, Rowley S, et al. Factors that influence collection and engraftment of autologous peripheral-blood stem cells. J Clin Oncol 1995;13:2547–2555.

    PubMed  CAS  Google Scholar 

  20. Bearman SI, Appelbaum FR, Buckner CD, et al. Regimen-related toxicity in patients undergoing bone marrow transplantation. J Clin Oncol 1988;6:1562–1568.

    PubMed  CAS  Google Scholar 

  21. Hryniuk WM, Bush H. The importance of dose intensity in chemotherapy of metastatic breast cancer. J Clin Oncol 1984;2:1281–1287.

    PubMed  CAS  Google Scholar 

  22. Tannock IF, Boyd NF, Deboer F, et al. A randomized trial of two dose levels of cyclophosphamide, methotrexate and fluorouracil chemotherapy for patients with metastatic breast cancer. J Clin Oncol 1988;6:1377–1387.

    PubMed  CAS  Google Scholar 

  23. Bezwoda WR, Seymour L, Dansey RD. High-dose chemotherapy with hematopoietic rescue as primary treatment for metastatic breast cancer: a randomized trial. J Clin Oncol 1995;13:2483–2489.

    PubMed  CAS  Google Scholar 

  24. Hortobagyi GN, Dunphy F, Buzdar AU, et al. Dose intensity studies in breast cancer—autologous bone marrow transplantation. Prog Clin Biol Res 1990;354B:195–209.

    PubMed  CAS  Google Scholar 

  25. Hortobagyi GN, Bodey GP, Buzdar AU, et al. Evaluation of high dose versus standard FAC chemotherapy for advanced breast cancer in protected environment unit: a prospective randomized study. J Clin Oncol 1987;5:354–364.

    PubMed  CAS  Google Scholar 

  26. Greenberg PAC, Hortobagyi GN, Smith TL, et al. Long-term follow-up of patients with complete remission following combination chemotherapy for metastatic breast cancer. J Clin Oncol 1996;14:2197–2205.

    PubMed  CAS  Google Scholar 

  27. Dunphy FR, Spitzer G, Buzdar AU, et al. Treatment of estrogen receptor-negative or hormonally refractory breast cancer with double high-dose chemotherapy intensification and bone marrow support. J Clin Oncol 1990;8:1207–1216.

    PubMed  CAS  Google Scholar 

  28. Huan SD, Yau JC, Dunphy FR, et al. Impact of autologous bone marrow infusion on hematopoietic recovery after high-dose cyclophosphamide, etoposide, and cisplatin. J Clin Oncol 1991;9:1609–1617.

    PubMed  CAS  Google Scholar 

  29. Neidhart JA, Kohler W, Stidley C, et al. Phase I study of repeated cycles of high-dose cyclophosphamide, etoposide, and cisplatin administered without bone marrow transplantation. J Clin Oncol 1990;8:1728–1738.

    PubMed  CAS  Google Scholar 

  30. Antman KH, Rowlings PA, Vaughan WP, et al. High-dose chemotherapy with autologous hematopoietic stem-cell support for breast cancer in North America. J Clin Oncol 1997;15:1870–1879.

    PubMed  CAS  Google Scholar 

  31. Antman K, Ayash L, Elias A, et al. A phase II study of high-dose cyclophosphamide, thiotepa, and carboplatin with autologous marrow support in women with measurable advanced breast cancer responding to standard-dose therapy. J Clin Oncol 1992;10:102–110.

    PubMed  CAS  Google Scholar 

  32. Williams SF, Bitran JD, Kaminer I, et al. A phase I–II study of bialkylator chemotherapy high-dose thiotepa and cyclophosphamide with autologous bone marrow reinfusion in patients with advanced cancer. J Clin Oncol 1987;5:260–265.

    PubMed  CAS  Google Scholar 

  33. Peters WP, Shpall EJ, Jones RB, et al. High dose combination alkylating agents with bone marrow support as initial treatment for metastatic breast cancer. J Clin Oncol 1988;6:1368–1376.

    PubMed  CAS  Google Scholar 

  34. Frei E III, Holden SA, Gonin R, et al. Antitumor alkylating agents: in vitro cross-resistance and collateral sensitivity studies. Cancer Chemother Pharmacol 1993;33:113–122.

    Article  PubMed  CAS  Google Scholar 

  35. Brenner MK, Rill DR, Moen RC, et al. Gene-marking to trace origin of relapse after autologous bone-marrow transplantation. Lancet 1993;341:85–86.

    Article  PubMed  CAS  Google Scholar 

  36. Deisseroth AB. Use of two retroviral markers to test relative contribution of marrow and peripheral blood autologous cells to recovery after preparative therapy. Hum Gene Ther 1993;4:71–85.

    Article  PubMed  CAS  Google Scholar 

  37. Dunbar CE, Cottler-Fox M, O’Shaughnessy JA, et al. Retrovirally marked CD34-en-riched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation. Blood 1995;85:3048–3057.

    PubMed  CAS  Google Scholar 

  38. Mapara MY, Körner IJ, Hildebrandt M, et al. Monitoring of tumor cell purging after highly efficient immunomagnetic selection of CD34 cells from leukapheresis products in breast cancer patients: comparison of immunocytochemical tumor cell staining and reverse transcriptase-polymerase chain reaction. Blood 1997;89:337–344.

    PubMed  CAS  Google Scholar 

  39. Vredenburgh JJ, Peters WP, Rosner G, et al. Detection of tumor cells in the bone marrow of stage IV breast cancer patients receiving high-dose chemotherapy: the role of induction chemotherapy. Bone Marrow Transplant 1995;16:815–821.

    PubMed  CAS  Google Scholar 

  40. Ross AA, Cooper BW, Lazarus HM, et al. Detection and viability of tumor cells in peripheral blood stem cell collections from breast cancer patients using immunocytochemical and clonogenic assay techniques. Blood 1993;82:2605–2610.

    PubMed  CAS  Google Scholar 

  41. Cote RJ, Rosen PP, Lesser ML, et al. Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases. J Clin Oncol 1991;9:1749–1756.

    PubMed  CAS  Google Scholar 

  42. Mansi JL, Berger U, McDonnell T, et al. The fate of bone marrow micrometastases in patients with primary breast cancer. J Clin Oncol 1989;7:445–449.

    PubMed  CAS  Google Scholar 

  43. Fields KK, Elfenbein GJ, Trudeau WL, et al. Clinical significance of bone marrow metastases as detected using the polymerase chain reaction in patients with breast cancer undergoing high-dose chemotherapy and autologous bone marrow transplantation. J Clin Oncol 1996;14:1868–1876.

    PubMed  CAS  Google Scholar 

  44. Sharp JG, Bishop M, Chan WC, et al. Detection of minimal residual disease in hematopoietic tissues. Ann NY Acad Sci 1995;770:242–261.

    Article  PubMed  CAS  Google Scholar 

  45. Passos-Coelho J, Ross AA, Davis JM, et al. Bone marrow micrometastases in chemotherapy-responsive advanced breast cancer: effect of ex vivo purging with 4-hydroperoxycyclophosphamide. Cancer Res 1994;54:2366–2371.

    PubMed  CAS  Google Scholar 

  46. Shpall EJ, Bast RC Jr, Joines WT, et al. Immunomagnetic purging of breast cancer from bone marrow for autologous transplantation. Bone Marrow Transplant 1991;7:145–151.

    PubMed  CAS  Google Scholar 

  47. Vredenburgh JJ, Simpson W, Memoli VA, et al. Reactivity of anti-CD 15 monoclonal antibody PM-81 with breast cancer and elimination of breast cancer cells from human bone marrow by PM-81 and immunomagnetic beads. Cancer Res 1991;51:2451–2455.

    PubMed  CAS  Google Scholar 

  48. Shpall EJ, Jones RB, Bast RC Jr, et al. 4-Hydroperoxycyclophosphamide purging of breast cancer from the mononuclear cell fraction of bone marrow in patients receiving high-dose chemotherapy and autologous marrow support: a phase I trial. J Clin Oncol 1991;9:85–93.

    PubMed  CAS  Google Scholar 

  49. Civin CL, Strauss BL, Brovall C, et al. Antigenic analysis of hematopoiesis. III. A hematopoietic cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol 1984;133:157–165.

    PubMed  CAS  Google Scholar 

  50. Berenson RJ, Bensinger WI, Hill RS, et al. Engraftment after infusion of CD34+ marrow cells in patients with breast cancer or neuroblastoma. Blood 1991;77:1717–1722.

    PubMed  CAS  Google Scholar 

  51. Civin CI, Trischmann T, Kadan NS, et al. Highly purified CD34-positive cells reconstitute hematopoiesis. J Clin Oncol 1996;14:2224–2233.

    PubMed  CAS  Google Scholar 

  52. Shpall EJ, LeMaistre CF, Holland K, et al. A prospective randomized trial of buffy coat vs. CD34 selected autologous bone marrow support in high-risk breast cancer patients receiving high-dose chemotherapy. Blood 1997;90:4313–4320.

    PubMed  CAS  Google Scholar 

  53. Shpall EJ, Jones RB, Bearman SI, et al. Transplantation of enriched CD34-positive autologous marrow into breast cancer patients following high-dose chemotherapy: influence of CD34-positive peripheral-blood progenitors and growth factors on engraftment. J Clin Oncol 1994;12:28–36.

    PubMed  CAS  Google Scholar 

  54. Antman KH. Dose-intensive therapy in breast cancer. In: Armitage JO, Antman KH (eds) High Dose Cancer Therapy. Baltimore: Williams & Wilkins, 1992;701–718.

    Google Scholar 

  55. Eder JP, Antman K, Peters W, et al. High dose combination alkylating agents with autologous bone marrow support for metastatic breast cancer. J Clin Oncol 1986;4:1592–1597.

    PubMed  CAS  Google Scholar 

  56. Kennedy MJ, Beveridge RA, Rowley SD, et al. High-dose chemotherapy with reinfusion of purged autologous bone marrow following dose-intense induction as initial therapy for metastatic breast cancer. J Natl Cancer Inst 1991;3:920–926.

    Google Scholar 

  57. Williams SF, Gilewski T, Mick R, et al. High-dose consolidation therapy with autologous stem-cell rescue in stage IV breast cancer: follow-up report. J Clin Oncol 1992;10:1743–1747.

    PubMed  CAS  Google Scholar 

  58. Holland HK, Dix SP, Geller RB, et al. Minimal toxicity and mortality in high-risk breast cancer patients receiving high-dose cyclophosphamide, thiotepa, and carboplatin plus autologous marrow stem-cell transplantation and comprehensive supportive care. J Clin Oncol 1996;14:1156–1164.

    PubMed  CAS  Google Scholar 

  59. Peters WP, Ross M, Vredenburgh JJ, et al. High-dose chemotherapy and autologous bone marrow support as consolidation after standard-dose adjuvant therapy for high-risk primary breast cancer. J Clin Oncol 1993;11:1132–1143.

    PubMed  CAS  Google Scholar 

  60. Peters WP, Fay JW, Holland HK, et al. Autologous bone marrow transplantation in primary breast cancer: the American experience. Bone Marrow Transplant 1995;15(suppl 1): S254–S259.

    Google Scholar 

  61. Cheson BD. Bone marrow transplant trials for breast cancer. Oncology 1991;5:55–62.

    PubMed  CAS  Google Scholar 

  62. Eddy DM. High-dose chemotherapy with autologous bone marrow transplantation for the treatment of metastatic breast cancer. J Clin Oncol 1992;10:657–670.

    PubMed  CAS  Google Scholar 

  63. Rahman ZU, Frye DK, Buzdar AU, et al. Impact of selection process on response rate and long-term survival of potential high-dose chemotherapy candidates treated with standard-dose doxorubicin-containing chemotherapy in patients with metastatic breast cancer. J Clin Oncol 1997;15:3171–3177.

    PubMed  CAS  Google Scholar 

  64. Stemmer SM, Cagnoni PJ, Shpall E, et al. High-dose paclitaxel, cyclophosphamide, and cisplatin with autologous hematopoietic progenitor-cell support: a phase I trial. J Clin Oncol 1996;14:1463–1474.

    PubMed  CAS  Google Scholar 

  65. Schrier DM, Stemmer SM, Johnson T, et al. High-dose 90Y Mx-diethylenetriaminepentaacetic acid (DTPA)-BrE-3 and autologous hematopoietic stem cell support (AH-SCS) for the treatment of advanced breast cancer: a phase I trial. Cancer Res 1995;55:5921S–5924S.

    PubMed  Google Scholar 

  66. Johansen MJ, Madden T, Mehra R, et al. Phase I pharmacokinetic study of multicycle high-dose carboplatin followed by peripheral blood stem cell infusion. J Clin Oncol 1997;15:1481–1491.

    PubMed  CAS  Google Scholar 

  67. Hanania EG, Kavanagh J, Hortobagyi G, et al. Recent advances in the application of gene therapy to human disease. Am J Med 1995;99:537–552.

    Article  PubMed  CAS  Google Scholar 

  68. Hanania EG, Giles RE, Kavanagh J, et al. Results of mdr-1 vector modification trial indicate that granulocyte/macrophage colony-forming unit cells do not contribute to post transplant hematopoietic recovery following intensive systemic therapy. Proc Natl Acad Sci USA 1996;93:15346–15351.

    Article  PubMed  CAS  Google Scholar 

  69. Spencer HT, Sleep SEH, Rehg JE, et al. A gene transfer strategy for making bone marrow cells resistant to trimetrexate. Blood 1996;87:2579–2587.

    PubMed  CAS  Google Scholar 

  70. Pardoll DM. Paracrine cytokine adjuvants in cancer immunotherapy. Annu Rev Immunol 1995;13:399–415.

    Article  PubMed  CAS  Google Scholar 

  71. Kennedy M J, Vogelsang GB, Beveridge RA, et al. Phase I trial of intravenous cyclosporine to induce graft-versus-host disease in women undergoing autologous bone marrow transplantation for breast cancer. J Clin Oncol 1993;11:478–484.

    PubMed  CAS  Google Scholar 

  72. Areman EM, Mazumder A, Kotula PL, et al. Hematopoietic potential of IL-2-cultured peripheral blood stem cells from breast cancer patients. Bone Marrow Transplant 1996;18:521–525.

    PubMed  CAS  Google Scholar 

  73. Peters WP, Ross M, Vredenburgh JJ, et al. The use of intensive clinic support to permit outpatient autologous bone marrow transplantation for breast cancer. Semin Oncol 1994;21(suppl):25–31.

    PubMed  CAS  Google Scholar 

  74. Meisenberg BR, Miller WE, McMillan R, et al. Outpatient high-dose chemotherapy with autologous stem-cell rescue for hematologic and nonhematologic malignancies. J Clin Oncol 1997;15:11–17.

    PubMed  CAS  Google Scholar 

  75. Gajewski JL, Mehra R, Warkentin DI, et al. Outpatient autologous bone marrow transplantation. Cancer Bull 1995;47:298–300.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Champlin, R. (1999). Dose-Intensive Therapy with Autologous Blood Stem Cell or Bone Marrow Transplantation for Treatment of Breast Cancer. In: Singletary, S.E. (eds) Breast Cancer. M.D. Anderson Solid Tumor Oncology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2146-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2146-3_24

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7432-2

  • Online ISBN: 978-1-4612-2146-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics