Skip to main content

Turbulence Driven Between Counter-rotating Disks in Low Temperature Helium Gas

  • Chapter
Flow at Ultra-High Reynolds and Rayleigh Numbers

Abstract

We present an experimental study of fully developed turbulence between two counter-rotating disks, in low temperature helium gas. In this system, using low temperature helium gas allows to cover a range of microscale Reynolds number Rλ extending from 150 to 5040, under well controlled conditions. It is thus possible to investigate which would be difficult to address by using ordinary fluids. We give two examples: [i] the evolution of the structure function exponent and [ii] that of the hyperflatess of the velocity derivatives, with the Reynolds number. Unexpected results have been found; in particular, the existence of a transition in the dissipative range, around Rλ ≈ 700.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Transitions to turbulence in helium gas, F. Heslot, B. Castaing and A. Libchaber, Phys Rev. A. 36, 5870 (1987).

    Article  ADS  Google Scholar 

  2. Some measurements are presented in Velocity probability density functions of high Reynolds number turbulence, B. Castaing, Y. Gagne, E. Hopfinger, Physica D 46,177, (1990).

    Article  ADS  MATH  Google Scholar 

  3. Etude de la turbulence dans un jet d’helium gazeux a basse temperature, These, Benoit Chabaud, Universite Joseph Fourier, Grenoble 1 (1992).

    Google Scholar 

  4. Statistics of Turbulence between two counter-rotating disks in low temperature helium gas, J. Maurer, P. Tabeling, G. Zocchi, Europhys Lett., 26, 31 (1994).

    Article  ADS  Google Scholar 

  5. Probability density functions, skewness and flatness in large Reynolds number turbulence, P. Tabeling, G, Zocchi, F. Belin, J Maurer, H. Willaime, Phys Rev E, 53, 1613 (1996).

    Article  ADS  Google Scholar 

  6. H. Tennekees, J.L. Lumley, A first course in turbulence, The MIT Press, 1972

    Google Scholar 

  7. C. Lomas, Fundamentals of hot wire anemometry, Cambridge University Press.

    Google Scholar 

  8. Statistics of fine-scale velocity in turbulent plane and circular jets, R.A. Antonia, B. R. Satyaprakash, A. K. Hussain, J. Fluid Mech 119, 55 (1982).

    Article  ADS  Google Scholar 

  9. Characterization of the low pressure filaments in a three-dimensional flow, O. Cadot, S. Douady, Y. Couder, Phys, Rev 7, 2 (1995).

    Google Scholar 

  10. Measurement of the scaling of the dissipation at high Reynolds numbers, G. Zocchi, P. Tabeling, J. Maurer, H. Willaime, Phys Rev E, 50, 3693 (1994).

    Article  ADS  Google Scholar 

  11. “Turbulence,” by U. Frisch, Cambridge University Press, 1995

    MATH  Google Scholar 

  12. Extended self similarity in turbulent flows, R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli, S. Succi, Phys Rev E. 48, 1 (1993).

    Article  Google Scholar 

  13. Exponents of the structure function in an Helium experiment, F. Belin, P. Tabeling, H. Willaime, Physica D, 93, 52 (1996).

    Article  MATH  Google Scholar 

  14. Reynolds number dependence of skewness and flatness factors of turbulent velocity derivatives, C. W. Van Atta and R. A. Antonia, Phys Fluids 23, 252 (1980);

    Article  ADS  Google Scholar 

  15. see also a compilation in The multifractal spectrum of the dissipation field in turbulent flows, Meneveau C. M., Sreenivasan K.R., Nucl Phys B Proc Suppl, 2, 49 (1987).

    Article  ADS  Google Scholar 

  16. Higher order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence, R. M Kerr, J Fluid Mech 153, 31 (1985),

    Article  ADS  MATH  Google Scholar 

  17. The spatial structure and statistical properties of homogeneous turbulence,. A. Vincent and M. Meneguzzi, J Fluid Mech 225, 1 (1991),

    Article  ADS  MATH  Google Scholar 

  18. The structure of intense voracity in isotropic turbulence, Jimenez J., Wray A. A., Saffman P. G. and Rogallo, R.S., J Fluid Mech 225, 65 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  19. Observation of worms between counter-rotating cylinders, F. Belin, J. Maurer, P. Tabeling, H. Willaime, Journal Phys II, 6, 1 (1996).

    ADS  Google Scholar 

  20. Universality and Scaling in Fully Developed Turbulence, M. Nelkin, Advances in Physics 43, 143 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Belin, F., Maurer, J., Tabeling, P., Willaime, H. (1998). Turbulence Driven Between Counter-rotating Disks in Low Temperature Helium Gas. In: Donnelly, R.J., Sreenivasan, K.R. (eds) Flow at Ultra-High Reynolds and Rayleigh Numbers. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2230-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2230-9_25

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7464-3

  • Online ISBN: 978-1-4612-2230-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics