Skip to main content

Part of the book series: Statistics for Industry and Technology ((SIT))

Abstract

In this paper we consider control charts for time series. Several upper bounds are derived for the average delay of a generalized Shewhart chart. Furthermore, it is proved that for a Gaussian process the average delay is greater than or equal to the average delay for independent variables.

In an extensive computer study several EWMA and CUSUM charts are compared with each other. As measures for the performance the average run length and the maximal average delay are used. The target process is assumed to be an autoregressive process of order 1 and the out-of-control state is described by a change point model. It turns out that for both performance criteria the same ranking between the charts is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alwan, L. C. and Roberts, H. V. (1988). Time-series modeling for statistical process control. Journal of Business and Economic Statistics, 6, 87–95.

    Article  Google Scholar 

  2. Brockwell, P. J. and Davis, R. A. (1987). Time Series: Theory and Methods, New York: Springer-Verlag.

    MATH  Google Scholar 

  3. Brook, D. and Evans, D. A. (1972). An approach to the probability distributions of CUSUM run length, Biometrika, 59, 539–549.

    Article  MathSciNet  MATH  Google Scholar 

  4. Das Gupta, S., Eaton, M. L., Olkin, L, Perlman, M., Savage, L. J. and Sobel, M. (1972). Inequalities on the probability content of convex regions for elliptically contoured distributions, In Sixth Berkeley Symposium, Vol. II, p. 241–265, London: Cambridge University Press.

    Google Scholar 

  5. Gordon, L. and Pollak, M. (1994). An efficient sequential nonparametric scheme for detecting a change of distribution, The Annals of Statistics, 22, 763–804.

    Article  MathSciNet  MATH  Google Scholar 

  6. Graybill, F. A. (1969). Introduction to Matrices with Applications in Statistics, Belmont, CA: Wadsworth.

    Google Scholar 

  7. Harris, T. J. and Ross, W. H. (1991). Statistical process control procedures for correlated observations, Canadian Journal of Chemical Engineering, 69, 48–57.

    Article  Google Scholar 

  8. Kramer, H. G. (1997). On control charts for time series, Dissertation, Universität Ulm, Ulm, Germany.

    Google Scholar 

  9. Kramer, H. G. and Schmid, W. (1997). EWMA charts for multivariate time series, Sequential Analysis, 16, 131–154.

    Article  MathSciNet  MATH  Google Scholar 

  10. Maragah, H. D. and Woodall, W. D. (1992). The effect of autocorrelation on the retrospective X-chart, Journal of Statistical Computation and Simulation, 40, 29–42.

    Article  MATH  Google Scholar 

  11. Lucas, J. M. and Saccucci, M. S. (1992). Exponentially weighted moving average control schemes: properties and enhancements, Technometrics, 32, 1–29.

    Article  MathSciNet  Google Scholar 

  12. Montgomery, D. C. and Mastrangelo, C. M. (1991). Some statistical process control methods for autocorrelated data, Journal of Quality Technology, 23, 179–204.

    Google Scholar 

  13. Pollak, M. (1985). Optimal detection of a change in distribution, The Annals of Statistics, 13, 206–227.

    Article  MathSciNet  MATH  Google Scholar 

  14. Pollak, M. and Siegmund, D. (1975). Approximations to the expected sample size of certain sequential tests, The Annals of Statistics, 3, 1267–1282.

    Article  MathSciNet  MATH  Google Scholar 

  15. Pollak, M. and Siegmund, D. (1985). A diffusion process and its applications to detecting a change in the drift of Brownian motion, Biometrika, 72, 267–280.

    Article  MathSciNet  MATH  Google Scholar 

  16. Pollak, M. and Siegmund, D. (1991). Sequential detection of a change in a normal mean when the initial value is unknown, The Annals of Statistics, 19, 394–416.

    Article  MathSciNet  MATH  Google Scholar 

  17. Roberts, S. W. (1966). A comparison of some control chart procedures, Technometrics, 8, 411–430.

    Article  MathSciNet  Google Scholar 

  18. Schmid, W. (1995). On the run length of a Shewhart chart for correlated data, Statistical Papers, 36, 111–130.

    Article  MathSciNet  MATH  Google Scholar 

  19. Schmid, W. (1997a). On EWMA charts for time series, In Frontiers in Statistical Quality Control (Eds., H.-J. Lenz and P.-Th. Wilrich), pp. 115–137, Heidelberg, Germany: Physica-Verlag.

    Chapter  Google Scholar 

  20. Schmid, W. (1997b). CUSUM control schemes for Gaussian processes, Statistical Papers, 38, 191–217.

    Article  MathSciNet  MATH  Google Scholar 

  21. Shiryayev, A. N. (1963). On optimum methods in quickest detection problems, Theory of Probability and its Applications, 13, 22–46.

    Article  Google Scholar 

  22. Siegmund, D. (1985). Sequential Analysis, New York: Springer-Verlag.

    MATH  Google Scholar 

  23. Srivastava, M. S. and Wu, Y. (1993). Comparison of EWMA, CUSUM and Shiryayev-Roberts procedures for detecting a shift in the mean, The Annals of Statistics, 21, 645–670.

    Article  MathSciNet  MATH  Google Scholar 

  24. Tong, Y. L. (1980). Probability Inequalities in Multivariate Distributions, New York: Academic Press.

    MATH  Google Scholar 

  25. Tong, Y. L. (1990). The Multivariate Normal Distribution, New York: Springer-Verlag.

    MATH  Google Scholar 

  26. Vasilopoulos, A. V. and Stamboulis, A. P. (1978). Modification of control chart limits in the presence of data correlation, Journal of Quality Technology, 10, 20–30.

    Google Scholar 

  27. Wu, Y. (1996). A less sensitive linear detector for the change point based on kernel smoothing method, Metrika, 43, 43–55.

    Article  MathSciNet  MATH  Google Scholar 

  28. Yashchin, E. (1993). Performance of CUSUM control schemes for serially correlated observations, Technometrics, 35, 35–52.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Birkhäuser Boston

About this chapter

Cite this chapter

Kramer, H.G., Schmid, W. (1998). On the Average Delay of Control Schemes. In: Kahle, W., von Collani, E., Franz, J., Jensen, U. (eds) Advances in Stochastic Models for Reliability, Quality and Safety. Statistics for Industry and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2234-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2234-7_23

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7466-7

  • Online ISBN: 978-1-4612-2234-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics