Skip to main content

Multiscale Expansions, Symmetries and the Nonlinear Schrödinger Hierarchy

  • Chapter
Algebraic Aspects of Integrable Systems

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 26))

  • 417 Accesses

Abstract

We study the propagation of quasi-monocromatic, nondissipative and weakly nonlinear waves, modelled by partial differential equations in 1 + 1 dimensions, using a multitime expansion. In the case of pure radiation, we show that the asymptotic character of this expansion is guaranted by requiring that the modulation of the leading amplitude of the waves satisfy the nonlinear Schrodinger hierarchy of evolution equations with respect to the slow space-time variables characteristic of the problem. The theory of the symmetries of integrable systems plays a crucial role in the derivation of this result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Degasperis, S.V. Manakov and P.M. Santini, Multiple-scale perturbation beyond the nonlinear Schroedinger equation, preprint Dipartimento di Fisica, Università “La Sapienza”, Roma (1995).

    Google Scholar 

  2. T. Taniuti, Suppi Proc. Th. Phys. 55 (1974), 1.

    Article  Google Scholar 

  3. Y. Kodama and T. Taniuti, J. Phys. Soc. Japan 45 (1978), 298.

    Article  MathSciNet  Google Scholar 

  4. Y. Kodama, J. Phys. Soc. Japan 45 (1978), 311.

    Article  MathSciNet  Google Scholar 

  5. S. P. Novikov, S.V. Manakov, L. P. Pitaeskij and V. E. Zakharov, Theory of Solitons, the Inverse Scattering Method, Consultant Burea, New York (1984).

    Google Scholar 

  6. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, Siam, Philadelphia (1981).

    MATH  Google Scholar 

  7. A.C. Newell, Solitons in Mathematics and Physics, 45 SIAM, Philadelphia, PA (1985).

    Google Scholar 

  8. V. E. Zakharov and E. A. Kuznetsov, Physica 18 D (1986), 455.

    Google Scholar 

  9. F. Calogero and W. Eckhaus, Inverse Problems 3 (1987), 229.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Calogero, J. Math. Phys. 30 (1989), 28.

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Zakharov and A. Shabat, Sov. Phys. JETP 34 (1972), 62.

    MathSciNet  Google Scholar 

  12. A. S. Fokas, Stud. Appi Math. 77 (1987), 253.

    MathSciNet  MATH  Google Scholar 

  13. A.V. Mikhailov, A.B. Shabat and V.V. Sokolov, in What is Integrabile ityedited by V. E. Zakharov Springer, Berlin (1990).

    Google Scholar 

  14. M.J. Ablowitz, D. Kaup, A.C. Newell and H. Segur, Stud. Appi. Math. 53 (1974), 249.

    MathSciNet  Google Scholar 

  15. F. Magri, J. Math. Phys. 19 (1978), 1156; also in: Nonlinear Evolution Equations and Dynamical Systems, edited by M. Boiti, F. Pempinelli and G. Soliani, Lectures Notes in Physics 120 Springer, N.Y. (1980), 233.

    Google Scholar 

  16. I. Gel’fand and I. Dorfman, Funct. Anal Appi. 13 (1979), 13; 14 (1980), 71.

    Google Scholar 

  17. A.S. Fokas and B. Fuchssteiner, Lett Nuovo Cimento 28 (1980), 299; Physica 4D (1981), 47.

    Article  MathSciNet  Google Scholar 

  18. R.A. Kraenkel, M.A. Manna and J.G. Pereira, J. Math. Phys. 36 (1995), 307.

    Article  MathSciNet  MATH  Google Scholar 

  19. V.E. Zakharov, S.V. Manakov, Sov. Phys. JETP 44 (1976), 106.

    Google Scholar 

  20. V. Catoni, Sviluppi a molti tempi in Fisica e la gerarchia dell’equazione di Schroedinger non lineare, Tesi di Laurea, Dipartimento di Fisica, Università La Sapienza, Roma, (1995).

    Google Scholar 

  21. V. Catoni and P.M. Santini: “Multiscale expansions in Fluid Dynamics and Plasma Physics and the nonlinear Schròdinger hierarchy;” Preprint in preparation.

    Google Scholar 

  22. A.Degasperis and P.M.Santini, Multiscale expansions of nonlinear partial differential equations and approximate symmetries, preprint in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Boston

About this chapter

Cite this chapter

Santini, P.M. (1997). Multiscale Expansions, Symmetries and the Nonlinear Schrödinger Hierarchy. In: Fokas, A.S., Gelfand, I.M. (eds) Algebraic Aspects of Integrable Systems. Progress in Nonlinear Differential Equations and Their Applications, vol 26. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2434-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2434-1_15

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7535-0

  • Online ISBN: 978-1-4612-2434-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics