Skip to main content

The Lower Brainstem Auditory Pathways

  • Chapter
Hearing by Bats

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 5))

Abstract

In the auditory system, more than any other sensory modality, extensive processing of incoming signals occurs in the brainstem. In all vertebrates, the auditory pathways below the inferior colliculus consist of a complex system of parallel pathways, each with its own centers for signal processing. The auditory structures of the lower brainstem act as filters to selectively enhance specific stimulus features and as computational centers to add, subtract, or compare signals in different channels. Some brainstem structures, such as the superior olive, have been studied extensively, and their function is at least partially understood. Others, such as the nuclei of the lateral lemniscus, have been largely ignored, and their functional roles are just beginning to be discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ALPO:

anterolateral periolivary nucleus

AN:

auditory nerve

AV, a, d, m, p:

anteroventral cochlear nucleus, anterior division, dorsal division, medial division, posterior division

AVCN:

anteroventral cochlear nucleus

BP:

brachium pontis

CB, CER:

cerebellum

CG:

central grey

CP:

cerebral peduncle

DCN, d, v:

dorsal cochlear nucleus, dorsal, ventral

DMPO:

dorsomedial periolivary nucleus

DMSO:

medial superior olive, dorsal division

DNLL:

dorsal nucleus of lateral lemniscus

DPO:

dorsal periolivary nucleus

GM, v:

medial geniculate body, ventral division

ICc:

inferior colliculus, central nucleus

INLL:

intermediate nucleus of the lateral lemniscus

LNTB:

lateral nucleus of the trapezoid body

LSO:

lateral superior olive

MNTB:

medial nucleus of the trapezoid body

MSO:

medial superior olive

NCAT:

nucleus of the central acoustic tract

PV, a, c, l, m:

posteroventral cochlear nucleus, anterior division, caudal division, lateral division, medial division

PVCN, d, v:

posteroventral cochlear nucleus, dorsal division, ventral division

Pyr, Py:

pyramidal tract

RB:

restiform body

SC:

superior colliculus

TB:

trapezoid body

VII:

seventh cranial nerve

VIII:

eighth cranial nerve

VMPO:

ventromedial periolivary nucleus

VMSO:

medial superior olive, ventral division

VNLL, c, m:

ventral nucleus of the lateral lemniscus, columnar division, multipolar cell division

VNTB:

ventral nucleus of the trapezoid body

VPO:

ventral periolivary nucleus

References

  • Adams JC (1976) Single unit studies on the dorsal and intermediate acoustic striae. J Comp Neurol 170:97–106.

    PubMed  CAS  Google Scholar 

  • Adams JC (1979) Ascending projections to the inferior colliculus. J Comp Neurol 183:519–538.

    PubMed  CAS  Google Scholar 

  • Adams JC, Mugnaini E (1984) Dorsal nucleus of the lateral lemniscus: a nucleus of GABAergic projection neurons. Brain Res Bull 13:585–590.

    PubMed  CAS  Google Scholar 

  • Adams JC, Mugnaini E (1990) Immunocytochemical evidence for inhibitory and disinhibitory circuits in the superior olive. Hear Res 49:281–298.

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Phillips SC (1984) Is the inferior colliculus an obligatory relay in the cat auditory system? Neurosci Lett 44:259–264.

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Anderson DJ, Brugge JF (1970) Tonotopic organization and discharge characteristics of single neurons in nuclei of the lateral lemniscus of the cat. J Neurophysiol 33:421–440.

    PubMed  CAS  Google Scholar 

  • Aschoff A, Ostwald J (1987) Different origins of cochlear efferents in some bat species, rats, and guinea pigs. J Comp Neurol 264:56–72.

    PubMed  CAS  Google Scholar 

  • Baron G (1974) Differential phylogenetic development of the acoustic nuclei among chiroptera. Brain Behav Evol 9:7–40.

    PubMed  CAS  Google Scholar 

  • Bishop AL, Henson OW (1987) The efferent cochlear projections of the superior olivary complex in the mustached bat. Hear Res 31:175–182.

    PubMed  CAS  Google Scholar 

  • Bishop AL, Henson OW (1988) The efferent auditory system in Doppler-shift compensating bats. In: Nachtigall PE, Moore PWB (eds) Animal Sonar: Processes and Performance. New York: Plenum, pp. 307–310.

    Google Scholar 

  • Bledsoe SC, Snead CR, Helfert RH, Prasad V, Wenthold RJ, Altschuler RA(1990) Immunocytochemical and lesion studies support the hypothesis that the projection from the medial nucleus of the trapezoid body to the lateral superior olive is glycinergic. Brain Res 517:189–194.

    PubMed  Google Scholar 

  • Bodenhamer RD, Pollak GD (1981) Time and frequency domain processing in the inferior colliculus of echolocating bats. Hear Res 5:317–335.

    PubMed  CAS  Google Scholar 

  • Bodenhamer RD, Pollak GD, Marsh DS (1979) Coding of fine frequency information by echoranging neurons in the inferior colliculus of the Mexican free-tailed bat. Brain Res 171:530–535.

    PubMed  CAS  Google Scholar 

  • Bourke TR, Mielcarz JP, Norris BE (1981) Tonotopic organization of the anteroventral cochlear nucleus of the cat. Hear Res 4:215–241.

    Google Scholar 

  • Brugge JF, Anderson DJ, Aitkin LM (1970) Responses of neurons in the dorsal nucleus of the lateral lemniscus of cat to binaural tonal stimulation. J Neurophysiol (Bethesda) 33:441–458.

    CAS  Google Scholar 

  • Bruns V (1976a) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. I. Mechanical specializations of the cochlea. J Comp Physiol 106:77–86.

    Google Scholar 

  • Bruns V (1976b) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. J Comp Physiol 107:87–97.

    Google Scholar 

  • Bruns V, Schmieszek ET (1980) Cochlear innervation in the greater horseshoe bat: demonstration of an acoustic fovea. Hear Res 3:27–43.

    PubMed  CAS  Google Scholar 

  • Brunso-Bechtold JK, Henkel CK, Linville C (1990) Synaptic organization in the adult ferret medial superior olive. J Comp Neurol 294:389–398.

    PubMed  CAS  Google Scholar 

  • Cajal Ramon SY (1909) Histologie du systeme nerveux de l’homme et des vertebres. Tome I. Madrid: Instituto Ramon y Cajal (1952), pp. 778–848.

    Google Scholar 

  • Cant NB (1992) The cochlear nucleus: neuronal types and their synaptic organization. In: Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag, pp. 66–116.

    Google Scholar 

  • Cant NB, Casseday JH (1986) Projections from the anteroventral cochlear nucleus to the lateral and medial superior olivary nuclei. J Comp Neurol 247:457–476.

    PubMed  CAS  Google Scholar 

  • Carr CE (1986) Time coding in electric fish and barn owls. Brain Behav Evol 28:122–134.

    PubMed  CAS  Google Scholar 

  • Casseday JH, Covey E (1987) Central auditory pathways in directional hearing. In: Yost W, Gourevitch G (eds) Directional Hearing. New York: Springer-Verlag, pp. 109–145.

    Google Scholar 

  • Casseday JH, Covey E (1992) Frequency tuning properties of neurons in the inferior colliculus of an FM bat. J Comp Neurol 319:34–50.

    PubMed  CAS  Google Scholar 

  • Casseday JH, Covey E, Vater M (1988) Connections of the superior olivary complex in the rufous horseshoe bat, Rhinolophus rouxi. J Comp Neurol 278:313–329.

    PubMed  CAS  Google Scholar 

  • Casseday JH, Ehrlich D, Covey E (1994) Neural tuning for sound duration: role of inhibitory mechanisms in the inferior colliculus. Science 264:847–850.

    PubMed  CAS  Google Scholar 

  • Casseday JH, Jones DR, Diamond IT (1979) Projections from cortex to tectum in the tree shrew, Tupaia glis. Comp Neurol 185:253–292.

    CAS  Google Scholar 

  • Casseday JH, Zook JM, Kuwabara N (1993) Projections of cochlear nucleus to superior olivary complex in an echolocating bat: relation to function. In: Merchan MA, Juiz JM, Godfrey DA (eds) The Mammalian Cochlear Nuclei: Organization and Function. New York: Plenum, pp. 303–319.

    Google Scholar 

  • Casseday JH, Kobler JB, Isbey SF, Covey E (1989) The central acoustic tract in an echolocating bat: an extralemniscal auditory pathway to the thalamus. J Comp Neurol 287:247–259.

    PubMed  CAS  Google Scholar 

  • Clark GM (1969a) The ultrastructure of nerve endings in the medial superior olive of the cat. Brain Res 14:298–305.

    Google Scholar 

  • Clark GM (1969b) Vesicle shape versus type of synapse in the nerve endings of the cat medial superior olive. Brain Res 15:548–551.

    PubMed  CAS  Google Scholar 

  • Covey E (1993a) Response properties of single units in the dorsal nucleus of the lateral lemniscus and paralemniscal zone of an echolocating bat. J Neurophysiol (Bethesda) 69:842–859.

    CAS  Google Scholar 

  • Covey E (1993b) The monaural nuclei of the lateral lemniscus: parallel pathways from cochlear nucleus to midbrain. In: Merchan MA, Juiz JM, Godfrey DA (eds) The Mammalian Cochlear Nuclei: Organization and Function. New York: Plenum, pp. 321–334.

    Google Scholar 

  • Covey E, Casseday JH (1986) Connectional basis for frequency representation in the nuclei of the lateral lemniscus of the bat, Eptesicus fuscus. J Neurosci 6:2926–2940.

    PubMed  CAS  Google Scholar 

  • Covey E, Casseday JH (1991) The monaural nuclei of the lateral lemniscus in an echolocating bat: parallel pathways for analyzing temporal features of sound. J Neurosci 11:3456–3470.

    PubMed  CAS  Google Scholar 

  • Covey E, Hall WC, Kobler JB (1987) Subcortical connections of the superior colliculus in the mustache bat, Pteronotus parnellii. J Comp Neurol 263:179–197.

    PubMed  CAS  Google Scholar 

  • Covey E, Vater M, Casseday JH (1991) Binaural properties of single units in the superior olivary complex of the mustached bat. J Neurophysiol (Bethesda) 66:1080–1094.

    CAS  Google Scholar 

  • Covey E, Johnson BR, Ehrlich D, Casseday JH (1993) Neural representation of the temporal features of sound undergoes transformation in the auditory midbrain: evidence from extracellular recording, application of pharmacological agents and in vivo whole cell patch clamp recording. Neurosci Abstr 19:535.

    Google Scholar 

  • Feng AS, Vater M (1985) Functional organization of the cochlear nucleus of rufous horseshoe bats (Rhinolophus rouxi): frequencies and internal connections are arranged in slabs. J Comp Neurol 235:529–553.

    PubMed  CAS  Google Scholar 

  • Friauf E, Ostwald J (1988) Divergent projections of physiologically characterized rat ventral cochlear nucleus neurons as shown by intra-axonal injection of horseradish peroxidase. Exp Brain Res 73:263–284.

    PubMed  CAS  Google Scholar 

  • Fuzessery ZM, Poljak GD (1985) Determinants of sound location selectivity in bat inferior colliculus: A combined dichotic and free-field stimulation study. Neurophysiol 54:757–781.

    CAS  Google Scholar 

  • Glendenning KK, Brunso-Bechtold JK, Thompson GC, Masterton R B (1981) Ascending auditory afferents to the nuclei of the lateral lemniscus. J Comp Neurol 197:673–704.

    PubMed  CAS  Google Scholar 

  • Godfrey DA, Kiang NYS, Norris BA (1975) Single unit activity in the dorsal cochlear nucleus of the cat. J Comp Neurol 162:269–284.

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Brown PB (1968) Functional organization of the dog superior olivary complex: an anatomical and electrophysiological study. J Neurophysiol (Bethesda) 31:639–656.

    CAS  Google Scholar 

  • Goldberg JM, Brownell WE (1973) Discharge characteristics of neurons in anteroventral and dorsal cochlear nuclei of cat. Brain Res 64:35–54.

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Moore RY (1967) Ascending projections of the lateral lemniscus in the cat and monkey. J Comp Neurol 129:143–156.

    Google Scholar 

  • Grothe B (1990) Versuch einer Definition des medialen Kernes des oberen Olivenkomplexes bei der Neuweltfledermaus Pteronotus parnellii. Ph.D. dissertation, Ludwig-Maximilians Universität, Munich, Germany.

    Google Scholar 

  • Grothe B (1994) Interaction of excitation and inhibition in processing of pure tone and amplitude-modulated stimuli in the medial superior olive of the mustached bat. J Neurophysiol 71:706–721.

    PubMed  CAS  Google Scholar 

  • Grothe B, Vater M, Casseday JH, Covey E (1992) Monaural interaction of excitation and inhibition in the medial superior olive of the mustached bat: an adaptation for biosonar. Proc Natl Acad Sci USA 89:5108–5112.

    PubMed  CAS  Google Scholar 

  • Guinan JJ, Norris BE, Guinan SS (1972) Single auditory units in the superior olivary complex. II: Locations of unit categories and tonotopic organization. Int J Neurosci 4:147–166.

    Google Scholar 

  • Guinan JJ, Warr WB, Norris BE (1983) Differential olivocochlear projections from lateral vs. medial zones of the superior olivary complex. J Comp Neurol 221:358–370.

    PubMed  Google Scholar 

  • Haplea S, Covey E, Casseday JH (1994) Frequency tuning and response latencies at three levels in the brainstem of the echolocating bat, Eptesicus fuscus. J Comp Physiol A 174:671–683.

    PubMed  CAS  Google Scholar 

  • Harnischfeger G, Neuweiler G, Schlegel P (1985) Interaural time and intensity coding in superior olivary complex and inferior colliculus of the echolocating bat, Molossus ater. J Neurophysiol 53:89–109.

    PubMed  CAS  Google Scholar 

  • Harrison JM, Irving R (1966) Visual and nonvisual auditory systems in mammals. Science 154:738–743.

    PubMed  CAS  Google Scholar 

  • Helfert RH, Bonneau JM, Wenthold RJ, Altschuler RA (1989) GABA and glycine immunoreactivity in the guinea pig superior olivary complex. Brain Res 501:269–286.

    PubMed  CAS  Google Scholar 

  • Henkel CK (1983) Evidence of sub-collicular projections to medial geniculate nucleus in the cat: an autoradiographic and horseradish peroxidase study. Brain Res 259:21–30.

    PubMed  CAS  Google Scholar 

  • Henson OW (1970) The central nervous system. In: Wimsatt WA (ed) Biology of Bats, Vol. 2. New York: Academic, pp. 57–152.

    Google Scholar 

  • Inbody SB, Feng AS (1981) Binaural response characteristics of single neurons in the medial superior olivary nucleus of the albino rat. Brain Res 210:361–366.

    PubMed  CAS  Google Scholar 

  • Irvine DRF (1992) Physiology of the auditory brainstem. In: Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Physiology. New York: Springer-Verlag, pp. 153–231.

    Google Scholar 

  • Irving R, Harrison JM (1967) Superior olivary complex and audition: A comparative study. J Comp Neurol 130:77–86.

    PubMed  CAS  Google Scholar 

  • Kiss A, Majorossy K (1983) Neuron morphology and synaptic architecture in the medial superior olivary nucleus. Exp Brain Res 52:15–327.

    Google Scholar 

  • Kober R, Schnitzler H-U (1990) Information in sonar echoes of fluttering insects available for echolocating bats. J Acoust Soc Am 87:874–881.

    Google Scholar 

  • Kobler JB, Isbey SF, Casseday JH (1987) Auditory pathways to the frontal cortex of the mustache bat, Pteronotus parnellii. Science 236:824–826.

    PubMed  CAS  Google Scholar 

  • Kössl M, Vater M (1989) Noradrenaline enhances temporal auditory contrast and neuronal timing precision in the cochlear nucleus of the mustached bat. J Neurosci 9:4169–4178.

    PubMed  Google Scholar 

  • Kössl M, Vater M (1990) Tonotopic organization of the cochlear nucleus of the mustache bat, Pteronotus parnellii. J Comp Physiol A 166:695–709.

    Google Scholar 

  • Kössl M, Vater M, Schweizer H (1988) Distribution of catecholamine fibers in the cochlear nuclei of horseshoe bats and mustache bats. J Comp Neurol 269:523–535.

    PubMed  Google Scholar 

  • Kudo M (1981) Projections of the lateral lemniscus in the cat: an autoradiographic study. Brain Res 221:57–69.

    PubMed  CAS  Google Scholar 

  • Kuwabara N, Zook JM (1991) Classification of the principal cells of the medial nucleus of the trapezoid body. J Comp Neurol 314:707–720.

    PubMed  CAS  Google Scholar 

  • Kuwabara N, Zook JM (1992) Projections to the medial superior olive from the medial and lateral nuclei of the trapezoid body in rodents and bats. J Comp Neurol 324:522–538.

    PubMed  CAS  Google Scholar 

  • Kuwabara N, DiCaprio RA, Zook JM (1991) Afferents to the medial nucleus of the trapezoid body and their collateral projections. J Comp Neurol 314:684–706.

    PubMed  CAS  Google Scholar 

  • Kuwada S, Yin TCT (1987) Physiological studies of directional hearing. In: Yost WA, Gourevitch G (eds) Directional Hearing. New York: Springer-Verlag, pp. 146–176.

    Google Scholar 

  • Lesser HD, O’Neill WE, Frisina RD, Emerson RC (1990) On-off units in the mustached bat inferior colliculus are selective for transients resembling “acoustic glint” from fluttering insect targets. Exp Brain Res 82:137–148.

    PubMed  CAS  Google Scholar 

  • Li L, Kelly JB (1992) Inhibitory influence of the dorsal nucleus of the lateral lemniscus on binaural responses in the rat’s inferior colliculus. J Neurosci 12:4530–4539.

    PubMed  CAS  Google Scholar 

  • Markovitz NS, Pollak G.D. (1994) Binaural processing in the dorsal nucleus of the lateral lemniscus Hear. Res. 73:121–140.

    PubMed  CAS  Google Scholar 

  • Masterton RB, Thompson GC, Bechtold JK, RoBards MJ (1975) Neuroanatomical basis of binaural phase-difference analysis for sound localization: a comparative study. J Comp Physiol Psychol 89:379–386.

    PubMed  CAS  Google Scholar 

  • Metzner W (1989) A possible neuronal basis for Doppler-shift compensation in echo-locating horseshoe bats. Nature 341:529–532.

    PubMed  CAS  Google Scholar 

  • Metzner, W (1993) An audio-vocal interface in echolocating horseshoe bats. J. Neurosci. 13:1899–1915.

    PubMed  CAS  Google Scholar 

  • Metzner W, Radtke-Schuller S (1987) The nuclei of the lateral lemniscus in the rufous horseshoe bat, Rhinolophus rouxi. J Comp Physiol 160:395–411.

    CAS  Google Scholar 

  • Moore JK (1987) The human auditory brain stem: a comparative view. Hear Res 29:1–32.

    PubMed  CAS  Google Scholar 

  • Moore MM, Caspary DM (1983) Strychnine blocks binaural inhibition in lateral superior olivary neurons. J Neurosci 3:237–242.

    PubMed  CAS  Google Scholar 

  • Moskowitz N, Liu J-C (1972) Central projections of the spiral ganglion of the squirrel monkey. J Comp Neurol 144:335–344.

    PubMed  CAS  Google Scholar 

  • Neuweiler G, Vater M (1977) Response patterns to pure tones of cochlear nucleus units in the CF-FM bat, Rhinolophus ferrumequinum. J Comp Physiol A 115:119–133.

    Google Scholar 

  • Noda Y, Pirsig W (1974) Anatomical projection of the cochlea to the cochlear nuclei of the guinea pig. Arch Otolaryngol 208:107–120.

    CAS  Google Scholar 

  • Novick A, Vaisnys JR (1964) Echolocation of flying insects by the bat Chilonycteris parnellii. Biol Bull 127:478–488.

    Google Scholar 

  • Oliver DL, Huerta MF (1992) Inferior and superior colliculi. In: Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag, pp. 168–221.

    Google Scholar 

  • Ollo C, Schwartz I (1979) The superior olivary complex in C5BL/6 mice. Am J Anat 155:349–374.

    PubMed  CAS  Google Scholar 

  • Olsen JF, Suga N (1991a) Combination sensitive neurons in the medial geniculate body of the mustached bat: encoding of relative velocity information. J Neurophysiol (Bethesda) 65:1254–1274.

    CAS  Google Scholar 

  • Olsen JF, Suga N (1991b) Combination sensitive neurons in the medial geniculate body of the mustached bat: encoding of target range information. J Neurophysiol 65:1275–1296.

    PubMed  CAS  Google Scholar 

  • O’Neill WE, Suga N (1979) Target range-sensitive neurons in the auditory cortex of the mustache bat. Science 203:69–73.

    PubMed  Google Scholar 

  • O’Neill WE, Suga N (1982) Encoding of target range and its representation in the auditory cortex of the mustached bat. J Neurosci 2:17–31.

    PubMed  Google Scholar 

  • O’Neill WE, Holt JR, Gordon M (1992) Responses of neurons in the intermediate and ventral nuclei of the lateral lemniscus of the mustached bat to sinusoidal and pseudorandom amplitude modulations. Assoc Res Otolaryngol Abstr 15:140.

    Google Scholar 

  • Osen KK (1969a) Cytoarchitecture of the cochlear nuclei in the cat. J Comp Neurol 136:453–484.

    PubMed  CAS  Google Scholar 

  • Osen KK (1969b) The intrinsic organization of the cochlear nuclei in the cat. Acta Otolaryngol 67:352–359.

    PubMed  CAS  Google Scholar 

  • Papez JW (1929a) Central acoustic tract in cat and man. Anat Rec 42:60.

    Google Scholar 

  • Papez JW (1929b) Comparative Neurology. New York: Crowell, pp. 270–293.

    Google Scholar 

  • Peyret D, Geffard M, Aran J-M (1986) GABA immunoreactivity in the primary nuclei of the auditory central nervous system. Hear Res 23:115–121.

    PubMed  CAS  Google Scholar 

  • Peyret D, Campistron G, Geffard M, Aran J-M (1987) Glycine immunoreactivity in the brainstem auditory and vestibular nuclei of the guinea pig. Acta Otolaryngol 104:71–76.

    PubMed  CAS  Google Scholar 

  • Pfeiffer RR (1966) Classification of response patterns of spike discharges for units in the cochlear nucleus: tone-burst stimulation. Exp Brain Res 1:220–235.

    PubMed  CAS  Google Scholar 

  • Poljak S (1926) Untersuchungen am Oktavussystem der Säugetiere und an den mit diesem koordinierten motorischen Apparaten des Hirnstammes. J Psychol Neurol 32:170–231.

    Google Scholar 

  • Pollak GD, Bodenhamer R (1981) Specialized characteristics of single units in the inferior colliculus of mustache bats: frequency representation, tuning and discharge patterns. J Neurophysiol 46:605–620.

    PubMed  CAS  Google Scholar 

  • Pollak GD, Casseday JH (1989) The Neural Basis of Echolocation in Bats. Berlin: Springer-Verlag.

    Google Scholar 

  • Pollak GD, Marsh DS, Bodenhamer R, Souther A (1977) Echo-detecting characteristics of neurons in inferior colliculus of unanesthetized bats. Science 196:675–678.

    PubMed  CAS  Google Scholar 

  • Rhode WS, Kettner RE (1987) Physiological study of neurons in the dorsal and posteroventral cochlear nucleus of the unanesthetized cat. J Neurophysiol 57:414–442.

    PubMed  CAS  Google Scholar 

  • Rose JE, Galambos R, Hughes JR (1959) Microelectrode studies of the cochlear nuclei of the cat. Bull Johns Hopkins Hosp 104:211–251.

    PubMed  CAS  Google Scholar 

  • Ross LS, Pollak GD (1989) Differential ascending projections to aural regions in the 60-kHz contour of the mustache bat’s inferior colliculus. J Neurosci 9:2819–2834.

    PubMed  CAS  Google Scholar 

  • Ross LS, Pollak GD, Zook JM (1988) Origin of ascending projections to an isofrequency region of the mustache bat’s inferior colliculus. J Comp Neurol 270:488–505.

    PubMed  CAS  Google Scholar 

  • Rouiller EM, Ryugo DK (1984) Intracellular marking of physiologically characterized cells in the ventral cochlear nucleus of the cat. J Comp Neurol 225:167–186.

    PubMed  CAS  Google Scholar 

  • Ryan AF, Woolf NK, Sharp FR (1982) Tonotopic organization in the central auditory pathway of the mongolian gerbil: a 2-deoxyglucose study. J Comp Neurophysiol 207:369–380.

    CAS  Google Scholar 

  • Ryugo DK (1992) The auditory nerve: peripheral innervation, cell body morphology, and central projections. In: Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neuroatomy. New York: Springer-Verlag, pp. 23–65.

    Google Scholar 

  • Schnitzler H-U, Menne D, Kober R, Heblich K (1983) The acoustical image of fluttering insects in echolocating bats. In: Huber F, Markl H (eds) Neuroethology and Behavioral Ethology: Roots and Growing Points. Berlin: Springer-Verlag, pp. 235–250.

    Google Scholar 

  • Schuller G, Radtke-Schuller S (1990) Neural control of vocalization in bats: mapping of brainstem areas with electrical microstimulation eliciting species-specific echolocation calls in the rufous horseshoe bat. Exp. Brain Res. 79: 192–206.

    PubMed  CAS  Google Scholar 

  • Schuller G, Covey E, Casseday JH (1991) Auditory pontine grey: connections and response properties in the horseshoe bat. Eur J Neurosci 3:648–662.

    PubMed  Google Scholar 

  • Schwartz IR (1980) The differential distribution of synaptic terminal classes on marginal and central cells in the cat medial superior olivary nucleus. Am J Anat 159:25–31.

    PubMed  CAS  Google Scholar 

  • Schwartz IR (1984) Axonal organization in the cat medial superior olivary nucleus. In: Neff WD (ed) Contributions to Sensory Physiology, Vol. 8. New York: Academic, pp. 99–129.

    Google Scholar 

  • Schwartz IR (1992) The superior olivary complex and lateral lemniscal nuclei. In: Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag, pp. 117–167.

    Google Scholar 

  • Schweizer H (1981) The connections of the inferior colliculus and the organization of the brainstem auditory system in the greater horseshoe bat (Rhinolophus ferrumequinum). J Comp Neurol 201:25–49.

    PubMed  CAS  Google Scholar 

  • Simmons JA (1989) A view of the world through the bat’s ear: the formation of acoustic images in echolocation. Cognition 33:155–199.

    PubMed  CAS  Google Scholar 

  • Simmons JA, Lawrence BD (1982) Echolocation in bats: The external ear and perception of the vertical positions of targets. Science 218:481–483.

    PubMed  Google Scholar 

  • Smith PH, Joris PX, Carney LH, Yin TCT (1991) Projections of physiologically characterized globular bushy cell axons from the cochlear nucleus of the cat. J Comp Neurol 304:387–407.

    PubMed  CAS  Google Scholar 

  • Spangler KM, Warr RB, Henkel CK (1985) The projections of principal cells of the medial nucleus of the trapezoid body in the cat. J Comp Neurol 238:249–262.

    PubMed  CAS  Google Scholar 

  • Spirou GA, Brownell WE, Zidanic M (1990) Recordings from cat trapezoid body and HRP labeling of globular bushy cell axons. J Neurophysiol (Bethesda) 63:1169–1190.

    CAS  Google Scholar 

  • Stotler WA (1953) An experimental study of the cells and connections of the superior olivary complex of the cat. J Comp Neurol 98:401–432.

    PubMed  CAS  Google Scholar 

  • Strominger NL, Strominger AI (1971) Ascending brain stem projections of the anteroventral cochlear nucleus in the rhesus monkey. J Comp Neurol 143:217–242.

    PubMed  CAS  Google Scholar 

  • Suga N (1964) Single unit activity in cochlear nucleus and inferior colliculus of echo-locating bats. J Physiol (Lond) 172:449–474.

    CAS  Google Scholar 

  • Suga N (1970) Echo-ranging neurons in the inferior colliculus of bats. Science 170:449–452.

    PubMed  CAS  Google Scholar 

  • Suga N, Jen PHS (1977) Further studies on the peripheral auditory system of “CF-FM” bats specialized for fine frequency analysis of Doppler-shifted echoes. J Exp Biol 69:207–232.

    PubMed  CAS  Google Scholar 

  • Suga N, Schlegel P (1972) Neural attenuation of responses to emitted sounds in echolocating bats. Science 177:82–84.

    PubMed  CAS  Google Scholar 

  • Suga N, Schlegel P (1973) Coding and processing in the auditory systems of FM-signal-producing bats. J Acoust Soc Am 54:174–190.

    PubMed  CAS  Google Scholar 

  • Suga N, Neuweiler G, Möller J (1976) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat Rhinolophus ferrumequinum. IV. Properties of peripheral auditory neurons. J Comp Physiol 106:111–125.

    Google Scholar 

  • Suga N, Shimozawa T (1974) Site of neural attenuation of responses to self-vocalized sounds in echolocating bats Science 183:1211–1213.

    PubMed  CAS  Google Scholar 

  • Suga N, Simmons JA, Jen PHS (1975) Peripheral specializations for fine frequency analysis of Doppler-shifted echoes in the CF-FM bat, Pteronotus parnellii. J Exp Biol 63:161–192.

    PubMed  CAS  Google Scholar 

  • Takahashi TT, Carr CE, Brecha N, Konishi M (1987) Calcium binding protein-like immunoreactivity labels the terminal field of nucleus laminaris of the barn owl. J Neurosci 7:1843–1856.

    PubMed  CAS  Google Scholar 

  • Tanaka K, Otani K, Tokunaga A, Sugita S (1985) The organization of neurons in the nucleus of the lateral lemniscus projecting to the superior and inferior colliculi in the rat. Brain Res 341:252–260.

    PubMed  CAS  Google Scholar 

  • Tolbert LP, Morest DK, Yurgelun-Todd DA (1982) The neuronal architecture of the anteroventral cochlear nucleus in the cat in the region of the cochlear nerve root: horseradish peroxidase labeling of identified cell types. Neuroscience 7:3031–3052.

    PubMed  CAS  Google Scholar 

  • Vater M (1982) Single unit responses in cochlear nucleus of horseshoe bats to sinusoidal frequency and amplitude modulated signals. J Comp Physiol A 149:369–388.

    Google Scholar 

  • Vater M, Feng AS (1990) Functional organization of ascending and descending connections of the cochlear nucleus of horseshoe bats. J Comp Neurol 292:373–395.

    PubMed  CAS  Google Scholar 

  • Vater M, Casseday JH, Covey E (1995) Convergence and divergence of ascending binaural and monaural pathways from the superior olives of the mustached bat. J Comp Neurol 351:632–646.

    PubMed  CAS  Google Scholar 

  • Von der Emde G, Schnitzler H-U (1986) Fluttering target detection in hipposiderid bats. J Comp Physiol 159:765–772.

    Google Scholar 

  • Von der Emde G, Schnitzler H-U (1990) Classification of insects by echolocating greater horseshoe bats. J Comp Physiol A 167:423–430.

    Google Scholar 

  • Warr WB (1966) Fiber degeneration following lesions in the anterior ventral cochlear nucleus of the cat. Exp Neurol 14:453–474.

    PubMed  CAS  Google Scholar 

  • Warr WB (1969) Fiber degeneration following lesions in the posteroventral cochlear nucleus of the cat. Exp Neurol 23:140–155.

    PubMed  CAS  Google Scholar 

  • Warr WB (1982) Parallel ascending pathways from the cochlear nucleus: neuroanatomical evidence of functional specialization. In: Neff WD (ed) Contributions to Sensory Physiology, Vol. 7. New York: Academic, pp. 1–38.

    Google Scholar 

  • Warr WB (1992) Organization of olivocochlear efferent systems in mammals. In: Popper A N, Fay R R (eds) The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag, pp. 410–448.

    Google Scholar 

  • Warr WB, Guinan JJ (1979) Efferent innervation of the organ of Corti: two separate systems. Brain Res 173:152–155.

    PubMed  CAS  Google Scholar 

  • Wenthold RJ, Huie D, Altschuler RA, Reeks KA (1987) Glycine immunoreactivity localized in the cochlear nucleus and superior olivary complex. Neuroscience 22:897–912.

    PubMed  CAS  Google Scholar 

  • Yang L, Pollak GD Resler C (1992) GABAergic circuits sharpen tuning curves and modify response properties in the mustache bat inferior colliculus. J Neurophysiol (Bethesda) 68:1760–1774.

    CAS  Google Scholar 

  • Yin TCT, Chan JCK (1990) Interaural time sensitivity in medial superior olive of cat. J Neurophysiol (Bethesda) 64:465–488.

    CAS  Google Scholar 

  • Zettel ML, Carr CE, O’Neill WE (1991) Calbindin-like immunoreactivity in the central auditory system of the mustached bat, Pteronotus parnelli. J Comp Neurol 313:1–16.

    PubMed  CAS  Google Scholar 

  • Zook JM, Casseday JH (1982a) Cytoarchitecture of auditory system in lower brainstem of the mustache bat, Pteronotusparnellii. J Comp Neurol 207:1–13.

    PubMed  CAS  Google Scholar 

  • Zook JM, Casseday JH (1982b) Origin of ascending projections to inferior colliculus in the mustache bat, Pteronotus parnellii, J Comp Neurol 207:14–28.

    PubMed  CAS  Google Scholar 

  • Zook JM, Casseday JH (1985) Projections from the cochlear nuclei in the mustache bat, Pteronotus parnellii. J Comp Neurol 237:307–324.

    PubMed  CAS  Google Scholar 

  • Zook JM, Casseday JH (1987) Convergence of ascending pathways at the inferior colliculus in the mustache bat, Pteronotus parnellii. J Comp Neurol 261:347–361.

    PubMed  CAS  Google Scholar 

  • Zook JM, DiCaprio RA (1988) Intracellular labeling of afferents to the lateral superior olive in the bat, Eptesicus fuscus. Hear Res 34:141–148.

    PubMed  CAS  Google Scholar 

  • Zook JM, Leake PA (1989) Connections and frequency representation in the auditory brainstem of the mustache bat, Pteronotus parnellii. J Comp Neurol 290:243–261.

    PubMed  CAS  Google Scholar 

  • Zook JM, Jacobs MS, Glezer I, Morgane PJ (1988) Some comparative aspects of auditory brainstem cytoarchitecture in echolocating mammals: speculations on the morphological basis of time-domain signal processing. In: Nachtigall PE, Moore PWB (eds) Animal Sonar: Processes and Performance. New York: Plenum, pp. 311–316.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Covey, E., Casseday, J.H. (1995). The Lower Brainstem Auditory Pathways. In: Popper, A.N., Fay, R.R. (eds) Hearing by Bats. Springer Handbook of Auditory Research, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2556-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2556-0_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7577-0

  • Online ISBN: 978-1-4612-2556-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics