Skip to main content

An Elimination Method Based on Seidenberg’s Theory and Its Applications

  • Conference paper
Computational Algebraic Geometry

Part of the book series: Progress in Mathematics ((PM,volume 109))

Abstract

In this paper we present an elimination method for algebraically closed fields based on Seidenberg’s theory. The method produces, for any pair [PS, QS] of sets of multivariate polynomials, a sequence of triangular forms TF 1,…, TF e and polynomial sets US 1,…, US e such that the difference set of common zeros of PS and QS is the same as the union of the difference sets of common zeros of TF i and US i. Moreover, the triangular forms TF i and polynomial sets US i can be so computed as to give a necessary and sufficient condition for the given system to have algebraic zeros for some prescribed variables. This method has a number of applications such as to solving systems of polynomial equations and inequalities, mechanical theorem proving in geometry, irreducible decomposition of algebraic varieties and constructive proof of Hilbert’s Nullstellensatz which are partially discussed in the paper. Preliminary experiments show that the efficiency of this method is at least comparable with that of the well-known methods of characteristic sets and Gröbner bases for some applications. A few illustrative yet encouraging examples performed by a draft implementation of the method are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Buchberger, An Algorithmical Criterion for the Solvability of Algebraic Systems of Equations (in German), Aequantiones Math. 4, 374–383 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  2. B. Buchberger, Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory, Multidimensional Systems Theory (N. K. Bose, ed.), D. Reidel Publishing Company, Dordrecht-Boston, 184–232 (1985).

    Chapter  Google Scholar 

  3. J. F. Canny, E. Kaltofen and L. Yagati, Solving Systems of Non-Linear Polynomial Equations Faster, Proc. ISSAC’89 (G. H. Gonnet, ed.), 121–128 (1989).

    Google Scholar 

  4. G. Carrà Ferro and G. Gallo, A Procedure to Prove Geometrical Statements, Proc. AAECC-5, Lecture Notes in Comput. Sci. 356, 141–150 (1987).

    Google Scholar 

  5. D. Yu. Grigoriev and A. L. Chistiv, Subexponential-Time Solving Systems of Algebraic Equations, Preprints LOMI E-9-83 and E-10-83, Leningrad (1983).

    Google Scholar 

  6. D. Yu. Grigoriev and A. L. Chistiv, Fast Decomposition of Polynomials into Irreducible Ones and the Solution of Systems of Algebraic Equations, Soviet Math. Dokl. (AMS Translation) 29, 380–383 (1984).

    Google Scholar 

  7. W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry, Vol. I, II, Cambridge University Press, Cambridge (1947/1952).

    MATH  Google Scholar 

  8. M. Kalkbrener, Three Contributions to Elimination Theory, Ph.D thesis, RISC-LINZ, Johannes Kepler University, Austria (1991).

    Google Scholar 

  9. D. Kapur, Using Gröbner Bases to Reason About Geometry Problems, J. Symb. Comput. 2, 399–408 (1996).

    Article  MathSciNet  Google Scholar 

  10. D. Lazard, Systems of Algebraic Equations, Proc. EUROSAM’79 (E. W. Ng, ed.), 88–94 (1979).

    Google Scholar 

  11. D. Lazard, Resolution des systemes d’equation algebriques, Theoretical Comput. Sci. 15, 77–110 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  12. D. Lazard, A New Method for Solving Algebraic Systems of Positive Dimension, Discrete Applied Math. 32, to appear (1991).

    Google Scholar 

  13. D. Lazard, Solving Zero-dimensional Algebraic Systems, J. Symb. Comput. 13, 117–131 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  14. F. S. MaCaulay, The Algebraic Theory of Modular Systems, Stechert-Hafner Service Agency, New York-London (1964).

    Google Scholar 

  15. J. F. Ritt, Differential Equations from the Algebraic Standpoint, Amer. Math. Soc., New York (1932).

    Google Scholar 

  16. J. F. Ritt, Differential Algebra, Amer. Math. Soc., New York (1950).

    MATH  Google Scholar 

  17. A. Seidenberg, Some Remarks on Hilbert’s Nullstellensatz, Arch. Math. 7, 235–240 (1956).

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Seidenberg, An Elimination Theory for Differential Algebra, Univ. California Publ. Math. (N.S.) 3(2), 31–66 (1956).

    MathSciNet  Google Scholar 

  19. A. Seidenberg, On k-Constructable Sets, k-Elementary Formulae, and Elimination Theory, J. reine angew. Math. 239/240, 256–267 (1969).

    MathSciNet  Google Scholar 

  20. B. Sturmfels, Sparse Elimination Theory, Presented at the Meeting on Comput. Algebraic Geometry and Commutative Algebra (Cortona, June 1991).

    Google Scholar 

  21. D. M. Wang, Characteristic Sets and Zero Structure of Polynomial Sets, Lecture Notes, RISC-LINZ, Johannes Kepler University, Austria (1989).

    Google Scholar 

  22. D. M. Wang, An Implementation of the Characteristic Set Method in Maple, Proc. DISCO’92 (Bath, England, April 13–15, 1992), to appear (1992).

    Google Scholar 

  23. D. M. Wang, On Wu’s Method for Solving Systems of Algebraic Equations, RISC-Linz Series no. 91-52.0, Johannes Kepler University, Austria (1991).

    Google Scholar 

  24. D. M. Wang, Reasoning about Geometric Problems Using Algebraic Methods, MEDLAR 24-Month Deliverables, to appear (1991).

    Google Scholar 

  25. D. M. Wang, A Strategy for Speeding up the Computation of Characteristic Sets, Proc. 17th Int. Symp. Math. Foundations of Comput. Sci. (Prague, August 24–28, 1992), to appear (1992).

    Google Scholar 

  26. D. M. Wang, An Elimination Method for Polynomial Systems, Preprint, RISC-LINZ, Johannes Kepler University, Austria (1992).

    Google Scholar 

  27. W. T. Wu, Basic Principles of Mechanical Theorem Proving in Elementary Geometries, J. Sys. Sci. & Math. Scis. 4, 207–235 (1984); J. Automated Reasoning 2, 221–252 (1986).

    Google Scholar 

  28. W. T. Wu, On Zeros of Algebraic Equations — An application of Ritt principle, Kexue Tongbao 31, 1–5 (1986).

    MATH  Google Scholar 

  29. W. T. Wu, A Zero Structure Theorem for Polynomial Equations-Solving, MM Research Preprints, No. 1, 2–12 (1987).

    Google Scholar 

  30. W. T. Wu, On a Projection Theorem of Quasi-Varieties in Elimination Theory, Chinese Ann. Math. Ser. B 11(2), 220–226 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Birkhäuser Boston

About this paper

Cite this paper

Wang, D. (1993). An Elimination Method Based on Seidenberg’s Theory and Its Applications. In: Eyssette, F., Galligo, A. (eds) Computational Algebraic Geometry. Progress in Mathematics, vol 109. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-2752-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2752-6_21

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7652-4

  • Online ISBN: 978-1-4612-2752-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics