Skip to main content

Molecular Characterization and Distribution of Vascular Endothelial Growth Factor

  • Chapter
Neuroendocrine Perspectives

Part of the book series: Neuroendocrine Perspectives ((NEUROENDOCRINE,volume 9))

Abstract

The cardiovascular system is the first organ system to develop and reach a functional state in an embryo. This precocity reflects the fundamental role that blood circulation plays in the delivery of nutrients and the disposal of catabolic products in a multicellular organism. Angiogenesis, the growth of new blood vessels, begins in the extraembryonic mesoderm of the yolk sac, the connecting stalk and the chorion as early as day 13 in the human (1). Nests of initially isolated endothelial cell cords develop a lumen. Primitive embryonic vessels form by confluence of lumina of separate cords about 2 d later (2,3). Further angiogenesis requires enzymatic degradation of the basement membrane of a local venule (4), endothelial cell Chemotaxis (5) and proliferation (6). Angiogenesis also is required in postnatal life for a wide variety of fundamental physiological processes such as somatic growth, wound healing, tissue and organ regeneration, cyclical growth of the corpus luteum and endometrium. Conversely, uncontrolled angiogenesis is now recognized as an important pathogenic component of a variety of conditions, including rheumatoid arthritis, retinopathies, psoriasis and retrolental fibroplasia (7–9). Also, a major factor that determines potential for rapid growth and propensity to metastasize in tumors is the ability of tumor cells to induce a neovascular response (10). This allows the tumor to establish contact with the vascular bed of the host and to be nourished.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moore KL (1982) The Developing Human, 3rd ed. Philadelphia: W. B. Saunders Co.

    Google Scholar 

  2. Hamilton WJ, Boyd JD, Mossman HW (1962) Human Embryology. Baltimore: Williams & Wilkins

    Google Scholar 

  3. Gilbert SF (1988) Developmental Biology, 2nd ed. Sunderland, MA: Sinauer

    Google Scholar 

  4. Gross JL, Moscatelli D, Rifkin DB (1983) Increased capillary endothelial cell protease activity in response to angiogenic stimuli in vitro. Proc Natl Acad Sci USA 80: 2623–2627

    PubMed  CAS  Google Scholar 

  5. Zetter B (1980) Migration of capillary endothelial cells is stimulated by tumour-derived factors. Nature: 285 41–43

    PubMed  CAS  Google Scholar 

  6. Folkman J, Haudenshild CC, Zetter BR (1979) Long-term culture of capillary endothelial cells. Proc Natl Acad Sci USA 76: 5217–5222

    PubMed  CAS  Google Scholar 

  7. Sporn MB, Roberts AB (1986) Peptide growth factors and inflammation, tissue repair, and cancer. J Clin Invest 78: 329–332

    PubMed  CAS  Google Scholar 

  8. Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235: 442–447

    PubMed  CAS  Google Scholar 

  9. Wahl SM, Wong H, McCartney-Francis N (1989) Role of growth factors in inflammation and repair. J Cell Biochem 40: 193–199

    PubMed  CAS  Google Scholar 

  10. Folkman J (1976) The vascularization of tumors. Sci Am 234(5): 58–73

    PubMed  CAS  Google Scholar 

  11. Fett JW, Strydom DJ, Lobb RR, Alderman EM, Bethune JL, Riordan JF, Vallee BL (1985) Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 24: 5480–5486

    PubMed  CAS  Google Scholar 

  12. Gimenez-Gallego G, Rodkey JC, Bennett C, Rios-Candelore M, DiSalvo J, Thomas K (1985) Brain-derived acidic fibroblast growth factor: complete amino acid sequence and homologies. Science 230: 1385–1388

    PubMed  CAS  Google Scholar 

  13. Thomas KA, Rios-Candelore M, Gimenez-Gallego G, DiSalvo J, Bennett C, Rodkey J, Fitzpatrick S (1985) Pure brain-derived acidic fibroblast growth factor is a potent angiogenic vascular endothelial cell mitogen with sequence homology to interleukin 1. Proc Natl Acad Sci USA 82: 6409–6413

    PubMed  CAS  Google Scholar 

  14. Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V, Nuseir N (1987) Macrophage-induced angiogenesis is mediated by tumor necrosis factorα. Nature 329: 630–632

    PubMed  CAS  Google Scholar 

  15. Derynck R, Roberts AB, Winkler ME, Chen EY, Goeddel DV (1984) Human transforming growth factor-α: precursor structure and expression in E. Coli. Cell 38: 287–297

    CAS  Google Scholar 

  16. Derynck R, Jarret JA, Chen EY, Eaton DH, Bell JR, Assoian RK, Roberts AB, Sporn MB, Goeddel DV (1985) Human transforming growth factor-β: complementary DNA sequence and expression in normal and transformed cells. Nature 316: 701–705

    PubMed  CAS  Google Scholar 

  17. Schreiber AB, Winkler ME, Derynck R (1986) Transforming growth factor-α is a more potent angiogenic mediator than epidermal growth factor. Science 232: 1250–1253

    PubMed  CAS  Google Scholar 

  18. Roberts AB, Spora MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH, Fauci AS (1986) Transforrning growth factor type β: rapid induction of fibrosis and angiogenesis in vitro and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83: 4167–4171

    PubMed  CAS  Google Scholar 

  19. Ziche M, Jones J, Gullino P (1982) Role of prostaglandin E1 and copper in angiogenesis. J Natl Cancer Inst 69: 475–482

    PubMed  CAS  Google Scholar 

  20. Miyazono K, Okabe T, Urabe A, Takaku F, Heldin C-H (1987) Purification and properties of an endothelial cell growth factor from human platelets. J Biol Chem 262: 4098–4103

    PubMed  CAS  Google Scholar 

  21. Ishikawa F, Miyazono K, Hellman U, Drexler H, Wernstedt C, Hagiwara K, Usuki K, Takaku F, Risau W, Heldin C-H (1989) Identification of angiogenic activity and the cloning and expression of platelet-derived endothelial cell growth factor. Nature 338: 557–562

    PubMed  CAS  Google Scholar 

  22. Fràter-Schröder M, Müller G, Birchmeier W, Böhlen P (1986) Transforming growth factor-beta inhibits endothelial cell proliferation. Biochem Biophys Res Commun 137: 295–302

    PubMed  Google Scholar 

  23. Sporn MB, Roberts AB, Wakefield LM, Crombrugghe B (1987) Some recent advances in the chemistry and biology of transforming growth factor-beta. J Cell Biol 105: 1039–1045

    PubMed  CAS  Google Scholar 

  24. Baird A, Mormède, P, Böhlen, P (1985) Immunoreactive fibroblast growth factor in cells of peritoneal exudate suggests its identity with macrophage-derived growth factor. Biochem Biophys Res Commun 126: 358–364

    PubMed  CAS  Google Scholar 

  25. Gospodarowicz D, Ferrara N, Schweigerer L, Neufeld G (1987) Structural characterization and biological functions of fibroblast growth factor. Endocrine Rev 8: 95–114

    CAS  Google Scholar 

  26. Jaye M, Howk R, Burgess W, Ricca GA, Chiu IM, Ravera MW, O’Brien SG, Modi WS, Maciag T, Drohan WN (1986) Human endothelial cell growth factor: cloning, nucleotide sequence, and chromosome localization. Science 233: 541–545

    PubMed  CAS  Google Scholar 

  27. Abraham JA, Mergia A, Whang JL, Tumolo A, Friedman J, Hjerrild KA, Gospodarowicz D, Fiddes JC (1986) Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science 233: 545–548

    PubMed  CAS  Google Scholar 

  28. Walter P, Blobel GJ (1981) Translocation of proteins across the endoplasmic reticulum. III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J Cell Biol 91: 557–561

    PubMed  CAS  Google Scholar 

  29. Moscatelli D, Presta M, Joseph-Silverstein J, Rifkin DB (1986) Both normal and tumor cells produce basic fibroblast growth factor. J Cell Physiol 129: 273–276

    PubMed  CAS  Google Scholar 

  30. Neufeld G, Ferrara N, Schweigerer L, Mitchell R, Gospodarowicz D (1987) Bovine granulosa cells produce basic fibroblast growth factor. Endocrinology 121: 597–603

    PubMed  CAS  Google Scholar 

  31. Ferrara N, Gospodarowicz D (1988) Regulation of ion transport in hypophyseal pars intermedia follicular cell monolayers. Biochem Biophys Res Commun 157: 1376–1382

    PubMed  CAS  Google Scholar 

  32. Schweigerer L, Ferrara N, Haaparanta T, Neufeld G, Gospodarowicz D (1988) Basic fibroblast growth factor: expression in cultured cells derived from corneal endothelium and lens epithelium. Exp Eye Res 46: 71–80

    PubMed  CAS  Google Scholar 

  33. Vlodavsky I, Folkman J, Sullivan R, Fridman R, Ishai-Michaeli R, Sasse J, Klagsbrun M (1987) Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into the subendothelial extracellular matrix. Proc Natl Acad Sci USA 84: 2292–2296

    PubMed  CAS  Google Scholar 

  34. Greenblatt M, Shubik P (1968) Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparent chamber technique. J Natl Cancer Inst 41: 111–124

    PubMed  CAS  Google Scholar 

  35. Ferrara N, Henzel WJ (1989) Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 161: 851–858

    PubMed  CAS  Google Scholar 

  36. Phillips HS, Hains J, Leung DW, Ferrara N (1990) Vascular endothelial growth factor is expressed in rat corpus luteum. Endocrinology 127: 965–967

    PubMed  CAS  Google Scholar 

  37. Vila-Porcile E (1972) Le réseau des cellules folliculo-stellaires et les follicules de l’adénoypophyse du rat (pars distalis) Z. Zellforsch Mikrosk Anat 129: 328–369

    CAS  Google Scholar 

  38. Farquhar MG, Stutelsky EH, Hopkins CR (1975) Structure and function of the anterior pituitary and dispersed pituitary cells. In vitro studies. In: Tixier-Vidal A, Farquhar MG (eds) The Anterior Pituitary Gland. New York: Academic Press: pp 82–135

    Google Scholar 

  39. Vila-Porcile E, Olivier L (1984) The problem of the folliculo-stellate cells in the pituitary gland. In: Motta PM (ed) Ultrastructure of Endocrine Cells and Tissues. Boston: Martinus Nijhoff Publisher: pp 64–76

    Google Scholar 

  40. Perryman EK (1989) Folliculo-stellate cells of the pituitary gland. Bioscience 39: 81–88

    Google Scholar 

  41. Ferrara N, Godsmith P, Fujii DK, Weiner R (1986) Culture and characterization of cultured bovine pituitary follicular cells. In: Conn PM (ed) Methods in Enzymology. Vol 124. New York: Academic Press: pp 245–253

    Google Scholar 

  42. Ferrara N, Fujii DK, Goldsmith PC, Widdicombe JH, Weiner RI (1987) Transport epithelial characteristics of cultured bovine pituitary follicular cells. Am J Physiol 252:E304–E312

    PubMed  CAS  Google Scholar 

  43. Ferrara N, Ousley F, Gospodarowicz D (1988) Bovine brain astrocytes express basic fibroblast growth factor, a neurotropic and angiogenic mitogen. Brain Res 462: 223–232

    PubMed  CAS  Google Scholar 

  44. Cereijido M, Robbins ES, Dolan WJ, Rotunno CA, Sabatini DD (1978) Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol 77: 853–880

    PubMed  CAS  Google Scholar 

  45. Lever JE (1979) Regulation of dome formation in differentiated epithelial cell structures. J Supramol Struc 12: 259–272

    CAS  Google Scholar 

  46. Benos DJ (1982) Amiloride. A molecular probe of sodium transport in tissues and cells. Am J Physiol 242: C131–C145

    PubMed  CAS  Google Scholar 

  47. Semoff S, Hadley ME (1978) Localization of ATPase activity to the glial-like cells of the pars intermedia. Gen Comp Endocrinol 35: 329–341

    PubMed  CAS  Google Scholar 

  48. Bambauer HJ, Ueno S, Umar H, Ueck M (1985) Histochemical and cytochemical demonstration of Ca++-ATPase activity in the stellate cells of the adenohypophysis of the guinea pig. Histochemistry 83: 195–200

    PubMed  CAS  Google Scholar 

  49. Gon G, Shirasawa N, Ishikawa H (1987) Appearance of the cyst-or ductule-like structures and their role in the restoration of rat pituitary autograft. Anat Rec 217: 371–378

    PubMed  CAS  Google Scholar 

  50. Daniel PM (1966) The blood supply of the hypothalamus and pituitary gland. Br Med Bull 22: 202–208

    PubMed  CAS  Google Scholar 

  51. Bergland RM, Page RB (1979) Pituitary-brain vascular relations: a new paradigm. Science 204: 18–24

    PubMed  CAS  Google Scholar 

  52. Forbes MS (1972) Fine structure of the stellate cell in the pars distalis of the lizard, Anolis carolinensis. J Morphol 136: 227–246

    PubMed  CAS  Google Scholar 

  53. Leatherland JF, Renfree MB (1982) Ultrastructure of the nongranulated cells and morphology of the extracellular spaces in the pars distalis of adult and pouch-young tammar wallabies (Macropus eugenii). Cell Tissue Res 227: 439–450

    PubMed  CAS  Google Scholar 

  54. Gross DS (1984) The mammalian hypophysial pars tuberalis: a comparative immunocytochemical study. Gen Comp Endocrinol 56: 283–298

    PubMed  CAS  Google Scholar 

  55. Harris GW (1955) The function of the pituitary stalk. Bull Johns Hopkins Hosp 97: 359–375

    Google Scholar 

  56. Ferrara N, Schweigerer L, Neufeld G, Mitchell R, Gospodarowicz D (1987) Pituitary follicular cells produce basic fibroblast growth factor. Proc Natl Acad Sci USA 84: 5773–5777

    PubMed  CAS  Google Scholar 

  57. Leung DW, Cachianes G, Kuang W-J, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246: 1306–1309

    PubMed  CAS  Google Scholar 

  58. Shing Y, Folkman J, Sullivan R, Butterfield C, Murray J, Klagsbrun M (1984) Heparin affinity: purification of a tumor-derived capillary endothelial growth factor. Science 223: 1296–1299

    PubMed  CAS  Google Scholar 

  59. Lobb RR, Fett JW (1984) Purification of two distinct growth factors from bovine neural tissue by heparin affinity chromatography. Biochemistry 23: 6295–6299

    PubMed  CAS  Google Scholar 

  60. Ferrara N, Leung DW, Cachianes G, Winer J, Henzel WJ (1990) Purification and cloning of a vascular endothelial growth factor secreted by pituitary folliculo-stellate cells. Meth Enzymol 190: [pages???]

    Google Scholar 

  61. Pearlman D, Halvorson HO (1983) A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J Mol Biol 167: 391–409

    Google Scholar 

  62. von Heijne G (1986) A new method for predicting signal sequence cleavage sites. Nucleic Acid Res 14: 4683–4690

    Google Scholar 

  63. Betsholtz C, Johnsson A, Heldin C-H, Westermark B, Lind P, Urdea MS, Eddy R, Shows TB, Philpott K, Mellor AL, Knott TJ, Scott J (1986) cDNA sequence and chromosomal localization of human platelet-derived growth factor A-chain and its expression in tumour cell lines. Nature 320: 695–697

    PubMed  CAS  Google Scholar 

  64. Weich HA, Sebold W, Schairer H-U, Hoppe J (1986) The human osteosarcoma cell line U-2 OS expresses a 3.8 kilobase mRNA which codes for the sequence of the PDGF-B chain. FEBS Lett 198: 344–348

    PubMed  CAS  Google Scholar 

  65. Johnsson A, Heldin C-H, Wasteson Å, Westermark B, Deuel TF, Huang JS, Seeburg PH, Gray A, Ullrich A, Scrace G, Stroobant P, Waterfield MD (1984) The c-sis gene encodes a precursor of the B chain of platelet-derived growth factor. EMBO J 3: 921–928

    PubMed  CAS  Google Scholar 

  66. Doolittle RF, Hunkapiller MW, Hood LE, Devare SG, Robbins K, Aaronson S, Antoniades HN (1983) Simian sarcoma virus onc gene, v-sis, is derived from the (gene or genes) encoding a platelet-derived growth factor. Science 221: 275–277

    PubMed  CAS  Google Scholar 

  67. Ross R, Raines EW, Bowen-Pope DF (1986) The biology of platelet-derived growth factor. Cell 46: 155–169

    PubMed  CAS  Google Scholar 

  68. Van Driel IR, Goding JW (1987) Plasma cell membrane glycoprotein PC-1. Primary structure deduced from cDNA clones. J Biol Chem 262: 4882–4887

    PubMed  Google Scholar 

  69. Antoniades HN (1981) Human platelet-derived growth factor (PDGF): purification of PDGF-I and PDGF-II and separation of their reduced subunits. Proc Natl Acad Sci USA 78: 7314–7317

    PubMed  CAS  Google Scholar 

  70. Antoniades HN, Hunkapiller MW (1983) Human platelet-derived growth factor (PDGF): amino-terminal amino acid sequence. Science 220: 963–965

    PubMed  CAS  Google Scholar 

  71. Gorman C (1985) High efficiency gene transfer into mammalian cells. In: Glover D (ed) DNA Cloning. Vol 2. Oxford: IRL Press: pp 143–190

    Google Scholar 

  72. Bonthron DT, Morton CC, Orkin SH, Collins T (1988) Plateled-derived growth factor A chain: gene structure, chromosomal location and basis for alternative mRNA splicing. Proc Natl Acad Sci USA 85: 1492–1496

    PubMed  CAS  Google Scholar 

  73. Rorsman F, Bywater M, Knott TJ, Scott J, Betsholtz C (1988) Structural characterization of the human platelet-derived growth factor A-chain cDNA and gene: alternative axon usage predicts two different precursor proteins. Mol Cell Biol 8: 571–577

    PubMed  CAS  Google Scholar 

  74. Betsholtz C, Rorsman F, Westermark B, Östman A, Heldin C-H (1990) Analogous alternative splicing. Nature 344: 299

    PubMed  CAS  Google Scholar 

  75. Lee BA, Maher DW, Hannink M, Donoghue DJ (1987) Identification of a signal for nuclear targeting in platelet-derived-growth-factor-related molecules. Mol Cell Biol 7: 3527–3537

    PubMed  CAS  Google Scholar 

  76. Maher DW, Lee BA, Donoghue DJ (1989) The alternatively spliced exon of the platelet-derived growth factor A chain encodes a nuclear targeting signal. Mol Cell Biol 9: 2251–2253

    PubMed  CAS  Google Scholar 

  77. Roberts R, Gallagher J, Spooncer E, Allen TD, Bloomfield E, Dexter TM (1988) Heparan sulphate bound growth factors: a mechanism for stromal cell mediated haemopoiesis. Nature 332: 376–378

    PubMed  CAS  Google Scholar 

  78. Senger DR, Perruzzi CA, Feder J, Dvorak HF (1986) A highly conserved vascular permeability factor secreted by a variety of human and rodent cell lines. Cancer Res 46: 5629–5632

    PubMed  CAS  Google Scholar 

  79. Keck PJ, Hauser SD, Krivi G, Sanzo K, Warren T, Feder J, Connolly DT (1989) Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246: 1309–1312

    PubMed  CAS  Google Scholar 

  80. Plouët J, Schilling J, Gospodarowicz D (1989) Isolation and characterization of a newly identified endothelial cell mitogen produced by AtT-20 cells. EMBO J 8: 3801–3806

    PubMed  Google Scholar 

  81. Rosenthal RA, Megyesi JF, Henzel WJ, Ferrara N, Folkman J 1990 Conditioned medium from mouse sarcoma 180 contains vascular endothelial growth factor. Growth Factors (in press)

    Google Scholar 

  82. Huberman E, Callaham MF (1979) Induction of terminal differentiation in human promyelocytic leukemia cells by tumor-promoting agents. Proc Natl Acad Sci USA 76: 1293–1297

    PubMed  CAS  Google Scholar 

  83. Baird A, Mormède P, Ying S, Wehrenberg WB, Ueno N, Ling N, Guillemin R (1985) A nonmitogenic pituitary function of fibroblast growth factor: regulation of thyrotropin and prolactin secretion. Proc Natl Acad Sci USA 82: 5545–5549

    PubMed  CAS  Google Scholar 

  84. DiCorleto PE, Bowen-Pope DF (1983) Cultured endothelial cells produce a platelet-derived growth factor-like protein. Proc Natl Acad Sci USA 80: 1919–1923

    PubMed  CAS  Google Scholar 

  85. Sjölund M, Hedin U, Sejersen T, Heldin C-H, Thyberg J (1988) Arterial smooth muscle cells express platelet-derived growth factor (PDGF) A chain mRNA, secrete a PDGF-like mitogen and bind exogenous PDGF in a phenotype-and growth state-dependent manner. J Cell Biol 106: 403–413

    PubMed  Google Scholar 

  86. Winkles JA, Friesel R, Burgess WH, Howk R, Melmhan T, Weinstein R, Maciag T (1987) Human vascular smooth muscle both express and secrete heparin-binding growth factor I (endothelial cell growth factor). Proc Natl Acad Sci USA 84: 7124–7128

    PubMed  CAS  Google Scholar 

  87. Gospodarowicz D, Ferrara N, Haaparanta T, Neufeld G (1988) Basic fibroblast growth factor: expression in cultured bovine vascular smooth muscle cells. Eur J Cell Biol 46: 144–151

    PubMed  CAS  Google Scholar 

  88. McFarland KC, Sprengel R, Phillips HS, Köhler M, Rosemblit N, Nikolics K, Segaloff DL, Seeburg PH (1989) Lutotropin-choriogonadotropin receptor: an unusual member of the G protein-coupled receptor family. Science 245: 494–499

    PubMed  CAS  Google Scholar 

  89. Ugrumov MV, Ivanova IP, Mitskevich MS (1983) Light-and electron-microscopic study on the maturation of the primary portal plexus during the perinatal period in rats. Cell Tissue Res 234: 179–191

    PubMed  CAS  Google Scholar 

  90. Page RB, Bergland RM (1977) The neurohypophyseal capillary bed. I. Anatomy and arterial supply. Am J Anat 148: 345–358

    PubMed  CAS  Google Scholar 

  91. Page RB, Leure-duPree AE, Bergland RM (1978) The neurohypophyseal capillary bed. II. Specializations within median eminence. Am J Anat 153: 33–66

    PubMed  CAS  Google Scholar 

  92. Thliveris JA, Currie RW (1980) Observations on the hypothalamo-hypophyseal portal vasculature in the developing human fetus. Am J Anat 157: 441–444

    PubMed  CAS  Google Scholar 

  93. Weiner R, Findell P, Ferrara N, Clapp C, Schechter J (1988) Arteriogenesis and the etiology of prolactinomas. In: Imura H (ed) Progress in Endocrinology 1988. Amsterdam: Elsevier Science Publishers: pp 559–566

    Google Scholar 

  94. Daniel PM (1966) The anatomy of the hypothalamus and pituitary gland. In: Martini L, Ganong WF (eds) Neuroendocrinology. Vol 1. New York: Academic Press: pp 15–80

    Google Scholar 

  95. MacLeod RM, Kimura H, Login I (1976) Inhibition of prolactin secretion by dopamine and piribedil (ET-495). In: Pecile A, Müller EE (eds) Growth Hormone and Related Peptides. New York: Elsevier/North Holland: pp 443–453

    Google Scholar 

  96. Ben-Jonathan N, Oliver C, Weiner HJ, Mical RS, Porter JC (1977) Dopamine in hypophyseal portal plasma of the rat during the estrous cycle and throughout pregnancy. Endocrinology 100: 452–458

    PubMed  CAS  Google Scholar 

  97. Elias KA, Weiner RI (1984) Direct arterial vascularization of estrogen-induced prolactin-secreting anterior pituitary tumors. Proc Natl Acad Sci USA 81: 4549–4553

    PubMed  CAS  Google Scholar 

  98. Schechter J, Ahmad N, Elias K, Weiner R (1987) Estrogen-induced tumors: changes in the vasculature of two strains of rat. Am J Anat 179: 315–323

    PubMed  CAS  Google Scholar 

  99. Evans HM (1909) On the development of aortae, cardinal and umbilical veins, and the other blood vessels of vertebrate embryos from capillaries. Anat Rec 3: 498–518

    Google Scholar 

  100. Risau W (1986) Developing brain produces an angiogenesis factor. Proc Natl Acad Sci USA 83: 3855–3859

    PubMed  CAS  Google Scholar 

  101. Defendini R, Zimmerman EA (1978) The magnocellular neurosecretory system of the mammalian hypothalamus. Research Publications of the Association for Research in Nervous and Mental Diseases 56: 137–152

    CAS  Google Scholar 

  102. Nelson JS (1990) Pathology of the nervous system. In: Rissane JM (ed) Anderson’s Pathology, 9th ed. St. Louis: C. V. Mosby: pp 2123–2196

    Google Scholar 

  103. Conn G, Soderman D, Schaeffer M-T, Wile M, Hatcher VB, Thomas KA (1990) Purification of a glycoprotein vascular endothelial cell mitogen from a rat glioma-derived cell line. Proc Natl Acad Sci USA 87: 1323–1327

    PubMed  CAS  Google Scholar 

  104. Larroche J-C (1984) Malformations of the nervous system. In: Adams JH, Corsellis JAN, Duchen LW (eds) Greenfield’s Neuropathology, 4th ed. New York: Wiley Medical Publishers: pp 385–450

    Google Scholar 

  105. Roizin L, Gold G, Berman HH, Bonafede VI (1959) Congenital vascular anomalies and their histopathology in Sturge-Weber-Dimitri syndrome (naevus flammeus with angiomatosis and encephalosis calcificans). J Neuropathol Exp Neurol 18: 75–97

    PubMed  CAS  Google Scholar 

  106. Andersson B (1977) Regulation of body fluids. Annu Rev Physiol 39: 185–200

    PubMed  CAS  Google Scholar 

  107. Bulger RE (1988) The urinary system. In: L. Weiss (ed.) Cell and Tissue Biology. A Textbook of Histology, 6th ed. Baltimore: Urban & Scwarzemberg: pp 815–849

    Google Scholar 

  108. Glasnock RJ, Brenner BM (1983) The major glomerulopathies. In: Petersdorf RG, Adams RD, Braunwald E, Isselbacher KJ, Martin JB, Wilson JD (eds) Harrison’s Principles of Internal Medicine, 10th ed. McGraw-Hill: New York: pp 1632–1642

    Google Scholar 

  109. Bassett DL (1943) The changes in the vascular pattern of the ovary of the albino rat during the estrous cycle. Am J Anat 73: 251–291

    Google Scholar 

  110. Koos RD, La Marie WJ (1983) Evidence for an angiogenic factor from rat follicles. In: Greenwald GS, Terranova PF (eds) Factors Regulating Ovarian Function. New York: Raven Press: pp 191–211

    Google Scholar 

  111. Jakob LW, Jentzsch KD, Meuersberger B, Oheme P (1977) Demonstration of angiogenesis activity in the corpus luteum of cattle. Exp Pathol 13: 231–239

    CAS  Google Scholar 

  112. Frederick JL, Shimanuki T, DiZerega GS (1984) Initiation of angiogenesis by human follicular fluid. Science 224: 389–390

    PubMed  CAS  Google Scholar 

  113. Gospodarowicz D, Cheng J, Lui GM, Baird A, Esch F, Böhlen P (1985) Corpus luteum angiogenic factor is related to fibroblast growth factor. Endocrinology 117: 2383–2391

    PubMed  CAS  Google Scholar 

  114. Koos RD (1986) Stimulation of endothelial cell proliferation by rat granulosa cell-conditioned medium. Endocrinology 119: 481–489

    PubMed  CAS  Google Scholar 

  115. Mastroianni L Jr, Komins J (1975) Capacitation, ovum maturation, fertilization and preimplantation development in the oviduct. Gynecol Invest 6: 226–233

    PubMed  Google Scholar 

  116. Slack JMW, Darlington BG, Heath JK, Godsave SF (1987) Mesoderm induction in early Xenopus embryo by heparin-binding growth factors. Nature 326: 197–200

    PubMed  CAS  Google Scholar 

  117. Kimelman D, Kirschner M (1987) Synergistic induction of mesoderm by FGF and TGF and the identification of an mRNA coding for FGF in early Xenopus embryo. Cell 51: 869–877

    PubMed  CAS  Google Scholar 

  118. Rosa F, Roberts AB, Danielpour D, Dart LL, Spora MB, Dawid IB (1988) Mesoderm induction in amphibians: the role of TGF-β2-like factors. Science 239: 783–785

    PubMed  CAS  Google Scholar 

  119. Murthy YS, Arronet GH, Parekh MC (1970) Luteal phase inadequacy. Its significance in infertility. Obstet Gynecol 36: 758–761

    PubMed  CAS  Google Scholar 

  120. Radwanska E, McGarrigle HHG, Swyer GI (1976) Plasma progesterone and oestradiol estimations in the diagnosis and treatment of luteal phase insufficiency in menstruating infertile women. Acta Eur Fertil 7: 39–45

    PubMed  CAS  Google Scholar 

  121. Novak ER, Woodruff JD (1979) Novak’s Gynecologic and Obstetric Pathology with Clinical and Endocrine Relations. Philadelphia: W. B. Saunders Co.

    Google Scholar 

  122. Langman J (1981) Medical Embryology, 4th ed. Baltimore: Williams & Wilkins

    Google Scholar 

  123. Collins T, Bonthron DT, Orkin SH (1987) Alternative RNA splicing affects function of encoded platelet-derived growth factor A chain. Nature 328: 621–624

    PubMed  CAS  Google Scholar 

  124. Tong BD, Auer DE, Jaye M, Kaplow JM, Ricca G, McConathy E, Drohan W, Deuel TF (1987) cDNA clones reveal differences between human glial and endothelial cells platelet-derived growth factor A-chains. Nature 328: 619–621

    PubMed  CAS  Google Scholar 

  125. Matoskova B, Rorsman F, Svensson V, Betsholtz C (1989) Alternative splicing of the platelet-derived growth factor A-chain transcript occurs in normal as well as tumor cells and is conserved among mammalian species. Mol Cell Biol 9: 3148–3150

    PubMed  CAS  Google Scholar 

  126. Rosenthal A, Lindquist PB, Bringman TS, Goeddel DV, Derynck R (1986) Expression in rat fibroblasts of a human transforming growth factor-α cDNA results in transformation. Cell 46: 301–309

    PubMed  CAS  Google Scholar 

  127. Jaye M, Lyall RM, Mudd R, Schlessinger J, Sarver N (1988) Expression of acidic fibroblast growth factor cDNA confers growth advantage and tumorigenesis to Swiss 3T3 cells. EMBO J 7: 963–969

    PubMed  CAS  Google Scholar 

  128. Goustin AS, Leof EB, Shipley GD, Moses HL (1986) Growth factors and cancer. Cancer Res 46: 1015–1029

    PubMed  CAS  Google Scholar 

  129. Dickson C, Peters G (1987) Potential oncogene product related to growth factors. Nature 326: 833

    PubMed  CAS  Google Scholar 

  130. Waterfield MD, Scrace GT, Whittle N, Stroobant P, Johnsson A, Wasteson Å, Westermark B, Heldin CH, Huang JS, Deuel TF (1983) Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature 304: 35–39

    PubMed  CAS  Google Scholar 

  131. Huang JS, Huang SS, Deuel T (1984) Transforming protein of simian sarcoma virus stimulates autocrine growth of SSV-transformed cells through PDGF cell-surface receptors. Cell 39: 79–87

    PubMed  CAS  Google Scholar 

  132. Downward J, Yarden Y, Mayes E, Scarce G, Totly N, Stockwell P, Ullrich A, Schlessinger J, Waterfield MD (1984) Close similarity of epidermal growth factor recepto and V-erβ oncogenes protein sequences. Nature 307: 521–525

    PubMed  CAS  Google Scholar 

  133. Schonbrunn A, Krasnoff R, Westendorf JM, Tashjian AH Jr (1980) Epiderman growth factor and thyrotropin-releasing hormone act similarly on a clonal pituitary cell strain. J Cell Biol 85: 786–792

    PubMed  CAS  Google Scholar 

  134. Gospodarowicz D, Ferrara N (1989) Fibroblast growth factor and the control of pituitary and gonad development and function. J Ster Biochem 32: 183–191

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Ferrara, N., Leung, D.W., Phillips, H.S. (1991). Molecular Characterization and Distribution of Vascular Endothelial Growth Factor. In: Müller, E.E., MacLeod, R.M. (eds) Neuroendocrine Perspectives. Neuroendocrine Perspectives, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3146-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3146-2_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7813-9

  • Online ISBN: 978-1-4612-3146-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics