Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 70))

  • 478 Accesses

Abstract

The long-time behavior of dissipative partial differential systems is characterized by the presence of a universal attractor X toward which all trajectories converge. This is the largest bounded set in the phase space of the system on which the backward-in-time initial value problem has bounded solutions. The structure of X may be very complicated even in the case of simple ordinary differential equations: X may be a fractal or parafractal set (i.e., a compact set for which the Hausdorff and fractal dimensions are different). In the case of dissipative partial differential equations, although the phase space (in the function space) is an infinite-dimensional Hilbert space, X has finite fractal dimension (see [CF, CFT]). However, the already complex nature of X is in this case further complicated by the infinite degrees of freedom of the ambient space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Constantin, P., Foias, C., Nicolaenko, B., Teman, R. (1989). Presentation of the Approach and of the Main Results. In: Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations. Applied Mathematical Sciences, vol 70. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3506-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3506-4_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8131-3

  • Online ISBN: 978-1-4612-3506-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics