Skip to main content

Peripheral Filters and Chemoreceptor Cells in Fishes

  • Conference paper
Sensory Biology of Aquatic Animals

Abstract

Olfaction in vertebrates is the sense used in the processing of chemical information that is detected and transmitted to the central nervous system by bipolar neurons that compose the olfactory nerve (cranial nerve I). Gustation is the sense used in the processing of chemical information that is detected by taste cells and transmitted centrally by facial (cranial nerve VII), glossopharyngeal (IX), or vagal (X) nerves. Receptor cells of both systems must discriminate relevant chemical stimuli from background chemical “noise” that exists in the immediate environment of all vertebrates. This ability of chemoreceptors to act as “peripheral filters” by detecting and preferentially passing information concerning biologically important chemical stimuli occurs through the evolutionary development of different receptor molecules with different chemospecificities built into the membranes of the receptor cells. This chapter will review the general organization of the olfactory epithelium and taste bud structure in fishes and summarize recent physiological findings as they relate to the sensitivities and specificities of the “filtering elements” (i.e., transduction processes and types of receptor sites) of the receptive olfactory and gustatory receptor cells. For books specific to chemoreception in aquatic organisms, see Kleerekoper (1969), Mackie and Grant (1974), Hara (1982), and Hasler and Scholz (1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atema, J. (1971) Structures and functions of the sense of taste in catfish (lctaluris natalis), Brain Behav. Evol., 4: 273–294.

    Article  PubMed  CAS  Google Scholar 

  • Bannister, L.H. (1965) The fine structure of the olfactory surface of telcostean fishes, Q. J. Microsc. Sci., 106: 333–342.

    Google Scholar 

  • Bardach, J.E., Todd, J.H., and Crickmer, R. (1967) Orientation by taste in fish of the genus Ictalurus, Science, 155: 1276–1278.

    Article  PubMed  CAS  Google Scholar 

  • Bartoshuk, L.M. (1975) Taste mixtures: Is mixture suppression related to compression? Physiol. Behav., 14: 634–649.

    Article  Google Scholar 

  • Beidler, L.M. and Smallman, R.L. (1965) Renewal of cells within taste buds, J. Cell Biol., 27: 263–272.

    Article  PubMed  CAS  Google Scholar 

  • Belousova, T.A., Devitsina, G.V., and Malyukina, G.A. (1983) Functional peculiarities of fish trigeminal system, Chem. Sens., 8: 121–130.

    Article  Google Scholar 

  • Breucker, H., Zeiske, E., and Melinkat, R. (1979) Development of the olfactory organ in the rainbow fish Nematocentris maccullochi (Atheriniformes, Melanotaeniidae), Cell Tissue Res., 200: 53–68.

    Article  PubMed  CAS  Google Scholar 

  • Bronshtein, A.A. (1976) Some peculiarities of fine structure of the olfactory organ in elasmobranchs, Z. Evol. Biokhim. Fiziol., 12: 63–67.

    CAS  Google Scholar 

  • Brown, S.B. and Hara, T.J. (1981) Accumulation of chemostimulatory amino acids by a sedimentable fraction isolated from olfactory rosettes of rainbow trout (Salmo gairdnerii), Biochem. Biophys. Acta, 675: 149–162.

    CAS  Google Scholar 

  • Burne, R.H. (1909) The anatomy of the olfactory organ of teleostean fishes, Proc. Zool. Soc. London, 2: 610–637.

    Google Scholar 

  • Byrd, R.P., Jr. and Caprio, J. (1982) Comparison of olfactory receptor (EOG) and bulbar (EEG) responses to amino acids in the catfish, Ictalurus punctatus, Brain Res., 249: 73–80.

    Article  PubMed  CAS  Google Scholar 

  • Cagan, R.H. (1981) Recognition of taste stimuli at the initial binding interaction, in Biochemistry of Taste and Olfaction, Cagan, R.H. (ed.), Academic Press, New York, pp. 175–203.

    Google Scholar 

  • Cagan, R.H. and Boyle, A.G. (1984) Biochemical studies of taste sensation. XI. Isolation, characterization and taste ligand binding activity of plasma membranes from catfish taste tissue, Biochem. Biophys. Acta 799: 230–237.

    PubMed  CAS  Google Scholar 

  • Cancalon, P. (1978) Isolation and characterization of the olfactory epithelial cells of the catfish, Chem. Sens. Flavour, 3: 381–396.

    Article  CAS  Google Scholar 

  • Cancalon, P. (1982) Degeneration and regeneration of olfactory cells induced by ZnSO4 and other chemicals, Tissue Cell, 14: 717–733.

    Article  PubMed  CAS  Google Scholar 

  • Cancalon, P. (1983) Receptor cells of the catfish olfactory mucosa, Chem. Sens., 81: 203–209.

    Article  Google Scholar 

  • Caprio, J. (1975) High sensitivity of catfish taste receptors to amino acids, Comp. Biochem. Physiol., 52A: 247–251.

    Article  Google Scholar 

  • Caprio, J. (1978) Olfaction and taste in the channel catfish: an electrophysiological study of the responses to amino acids and derivatives, J. Comp. Physiol., 123: 357–371.

    Article  Google Scholar 

  • Caprio, J. (1980) Similarity of olfactory receptor responses (EOG) of freshwater and marine catfish to amino acids, Can. J. Zool., 58: 1778–1784.

    Article  CAS  Google Scholar 

  • Caprio, J. (1982) High sensitivity and specificity of olfactory and gustatory receptors of catfish to amino acids, in Chemoreception in Fishes, Hara, T.J. (ed.), Elsevier, New York, pp. 109–134.

    Google Scholar 

  • Caprio, J. (1984) Olfaction and taste in fish, in The Comparative Physiology of Sensory Systems, Bolis, L., Keynes, R., and Maddrell, S.H.P. (eds.), Cambridge University Press, Cambridge, pp. 257–283.

    Google Scholar 

  • Caprio, J. and Byrd, R.P., Jr. (1984) Electrophysiological evidence for acidic, basic, and neutral amino acid olfactory receptor sites in the catfish, J. Gen. Physiol., 84: 403–422.

    Article  PubMed  CAS  Google Scholar 

  • Caprio, J. and Raderman-Little, R. (1978) Scanning electron microscopy of the channel catfish olfactory lamellae, Tissue Cell, 10: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Carr, W.E.S., Netherton, J.C., III, and Milstead, M.L. (1984) “Chemoattractants of the shrimp, Palaemonetes pugio: variability in responsiveness and the stimulatory capacity of mixtures containing amino acids quaternary ammonium compounds, purines and other substances”, Comp. Biochem. Physiol., 77A: 469–474.

    Article  CAS  Google Scholar 

  • Crisp, M., Lowe, G.A., and Laverack, M.S. (1975) On the ultrastructure and permeability of taste buds of the marine teleost Ciliata mustela, Tissue Cell, 7: 191–202.

    Article  PubMed  CAS  Google Scholar 

  • Davenport, C.J. and Caprio, J. (1982) Taste and tactile recordings from the ramus recurrens facialis innervating flank taste buds in the catfish, J. Comp. Physiol., 147: 217–229.

    Article  Google Scholar 

  • Delfino, G., Bianchi, S., and Ercolini, A. (1981) On the olfactory epithelium in cyprinids: a comparison between hypogean and epigean species, Monitore Zool. Ital. II (N.S.) Supp., 14: 153–180.

    Google Scholar 

  • Derby, C.D. and Ache, B.W. (1984) Electrophysiological identification of the stimulatory and interactive components of a complex odorant, Chem. Sens., 9: 201–218.

    Article  CAS  Google Scholar 

  • Døving, K.B., Dubois-Dauphin, M., Holley, A., and Jourdan, F. (1977) Functional anatomy of the olfactory organ of fish and the ciliary mechanisms of water transport, Acta Zool. (Stockh.), 58: 245–255.

    Article  Google Scholar 

  • Døving, K.B., Selset, R., and Thommesen, G. (1980) Olfactory sensitivity to bile acids in salmonid fishes, Acta Physiol. Scand., 108: 123–131.

    Article  PubMed  Google Scholar 

  • Dudek, J. and Caprio, J. (1985) “Additional” evidence for acidic, basic and neutral amino acid olfactory receptor sites in the catfish, Assoc. Chemorecept. Sci. Abst., 7: 49.

    Google Scholar 

  • Easton, D.M. (1971) Garfish olfactory nerve: easily accessible source of numerous long, homogeneous nonmelinated axons, Science, 72: 952–955.

    Article  Google Scholar 

  • Eller, P.A., Rowley, J.C., III, and Moran, D.T. (1985) The “rod cell” in trout olfactory epithelium: fact or artifact, Assoc. Chemorecept. Sci. Abst., 7: 451.

    Google Scholar 

  • Erickson, J.R. and Caprio, J. (1984) The spatial distribution of ciliated and microvillous olfactory receptor neurons in the channel catfish is not matched by a differential specificity to amino acid and bile salt stimuli, Chem. Sens., 9: 127–141.

    Article  Google Scholar 

  • Farbman, A.I. (1980) Renewal of taste bud cells in rat circumvallate papillae, Cell Tissue Res., 13: 349–357.

    CAS  Google Scholar 

  • Finger, T.E. (1982) Somatotopy in the representation of the pectoral fin and free fin rays in the spinal cord of the sea robin, Prionotus carolinsus, Biol. Bull., 163: 154–161.

    Article  Google Scholar 

  • Gardner, W.S. and Lee, G.F. (1975) The role of amino acids in the nitrogen cycle of Lake Mendota, Limnol. Oceanogr., 20: 379–388.

    Article  CAS  Google Scholar 

  • Gemne, G. and Døving, K.B. (1969) Ultrastructural properties of primary olfactory neurons in fish (Lota lota L), Am. J. Anat., 126: 452–476.

    Article  Google Scholar 

  • Goh, Y. and Tamura, T. (1978) The electrical responses of the olfactory tract to amino acids in carp, Bull. Jpn. Soc. Sci. Fish, 44: 341–344.

    Article  CAS  Google Scholar 

  • Goh, Y. and Tamura, T. (1980) Olfactory and gustatory responses to amino acids in two marine teleosts-red sea bream and mullet, Comp. Biochem. Physiol., 66C: 217–224.

    Google Scholar 

  • Graziadei, P.P.C. and Metcalf, J.F. (1971) Autoradiographic and ultrastructural observations in the frog’s olfactory mucosa, Z. Zellforsch. Mikrosk. Anat., 116: 305–318.

    Article  PubMed  CAS  Google Scholar 

  • Grover-Johnson, N. and Farbman, A.I. (1976) Fine structure of taste buds in the barbel of the catfish, Ictalurus punctatus, Cell Tissue Res., 169: 395–403.

    Article  PubMed  CAS  Google Scholar 

  • Hara, T.J. (1975) Olfaction in fish, in Progress in Neurobiology, vol. 5, Kerkut, G.A. and Phillips, J.W. (eds.), Pergamon Press, Oxford, pp. 271–335.

    Google Scholar 

  • Hara, T.J. (1982) Chemoreception in Fishes, Elsevier Press, Amsterdam.

    Google Scholar 

  • Hara, T.J., MacDonald, S., Evans, R.E., Marui, T., and Arai, S. (1984) Morpholine bile acids and skin mucus as possible chemical cues in salmonid homing: electrophysiological re-evaluation, in Mechanisms of Migration in Fishes, McCleave, J.D., Arnold, G.P., Dodson, J.D., and Neill, W.H. (eds.), Plenum, New York, pp. 363–378.

    Google Scholar 

  • Hasler, A.D. and Scholz, A.T. (1983) Olfactory imprinting and homing in salmon, Springer-Verlag, New York.

    Google Scholar 

  • Herrick, C.J. (1901) The cranial nerves and cutaneous sense organs of the North American siluroid fishes, J. Comp. Neurol., 11: 177–249.

    Article  Google Scholar 

  • Hidaka, I. (1982) Taste receptor stimulation and feeding behavior in the puffer, In Chemoreception in Fishes, Hara, T.J. (ed.), Elsevier, New York, pp. 243–257.

    Google Scholar 

  • Hidaka, I., Nyu, N., and Kiyohara, S. (1976) Gustatory response in the puffer. IV. Effects of mixtures of amino acids and betaine, Bull. Fac. Fish Mie Univ 317–28.

    Google Scholar 

  • Hidaka, I., Kiyohara, S., and Oda, S. (1977) Gustatory response in the puffer. III. Stimulatory effectiveness of nucleotides and their derivatives, Bull. Jpn Soc Sci Fish., 43: 423–428.

    Article  CAS  Google Scholar 

  • Hirata, Y. (1966) Fine structure of the terminal buds on the barbels of some fishes, Arch. Histol. Jpn., 26: 507–523.

    PubMed  CAS  Google Scholar 

  • Hyman, A.M. and Frank, M.E. (1980) Effects of binary taste stimuli on the neural activity of the hamster chordatympani, J. Gen. Physiol., 76: 125–142.

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa, M. and Ueda, K. (1977) Fine structure of the olfactory epithelium in the goldfish, Carassius auratus. A study of retrograde degeneration, Cell Tissue Res 183: 445–455.

    Article  PubMed  CAS  Google Scholar 

  • Johannes, R E. and Webb, K.L. (1970) Release of dissolved organic compounds by marine and fresh water invertebrates, in Symposium on Organic Matter in Natural Waters, Hood, D.W. (ed.), Alaska Institute of Marine Science, University of Alaska pp. 257–274.

    Google Scholar 

  • Johnsen, P.B. and Teeter, J. (1980) Spatial gradient detection of chemical cues by catfish, J. Comp. Physiol., 140: 95–99.

    Article  Google Scholar 

  • Kanwal, J.S. and Caprio, J. (1983) An electrophysiological investigation of the oropharyngeal (IX-X) taste system in the channel catfish, Ictalurus punctatus J Comp Physiol., 150: 345–357.

    Article  Google Scholar 

  • Kashiwayanagi, M., Miyake, M., and Kurihara, K. (1983) Voltage-dependent Cat2channel and Na+ channel in frog taste cells, Am. J. Physiol., 244: C82-C88.

    PubMed  CAS  Google Scholar 

  • Kiyohara, S., Yamashita, S., and Kitoh, J. (1980) Distribution of taste buds on the lips and inside the mouth in the minnow, Pseudorasboraparva, Physiol. Behav., 24: 1143–1147.

    Article  PubMed  CAS  Google Scholar 

  • Kiyohara, S., Yamashita, S., and Harada, S. (1981) High sensitivity of minnow gustatory receptors to amino acids, Physiol. Behav., 26: 1103–1108.

    Article  PubMed  CAS  Google Scholar 

  • Kleerekoper, H. (1969) Olfaction in Fishes, Indiana University Press, Bloomington.

    Google Scholar 

  • Kreutzberg, G.W. and Gross, G.W. (1977) General morphology and axonal ultrastructure of the olfactory nerve of the pike, Exos lucius. Cell Tissue Res., 181: 443–457.

    Article  PubMed  CAS  Google Scholar 

  • Lane, E.B. and Whitear, M. (1982) Sensory structures at the surface of fish skin. I. Putative chemoreceptors, Zool. J. Linn. Soc., 75: 141–151.

    Article  Google Scholar 

  • Mackie, A.M. and Grant, P.T. (1974) Chemoreception in Marine Organisms, Academic Press, New York.

    Google Scholar 

  • Marui, T., Evans, R.E., and Hara, T.J. (1983) Gustatory responses of the rainbow trout (Salmo gairdnerii) palate to amino acids and derivatives, J. Comp. Physiol., 153: 423–433.

    Article  Google Scholar 

  • Marui, T., Harada, S., and Kasahara, Y. (1983) Gustatory specificity for amino acids in the facial taste system of the carp, Cyprinus carpio L., J. Comp. Physiol., 153: 299–308.

    Article  CAS  Google Scholar 

  • Morita, Y. and Finger, T. (1985a) Reflex connections of the facial and vagal gustatory systems in the brainstem of the bullhead catfish, Ictalurus nebulosus, J. Comp. Neurol., 231: 547–558.

    Article  PubMed  CAS  Google Scholar 

  • Morita, Y. and Finger, T. (1985b) Topographic and laminar organization of the vagal gustatory system in the goldfish, Carassius auratus, J. Comp. Neurol., 238: 187–201.

    Article  PubMed  CAS  Google Scholar 

  • Moulton, D. (1975) Cell renewal in the olfactory epithelium of the mouse, in Olfaction and Taste V, Denton, D.A. and Coghlan, J.P. (eds.), Academic Press, New York, pp. 111–114.

    Google Scholar 

  • Muller, J.F. and Marc, R.E. (1984) Three distinct morphological classes of receptors in fish olfactory organs, J. Comp. Neurol., 222: 482–495.

    Article  PubMed  CAS  Google Scholar 

  • Murray, R.G. (1973) The ultrastructure of taste buds, in The Ultrastructure of Sensory Organs I, Friedman, I. (ed.), North Holland Publishing Co., Amsterdam, pp. 1–81.

    Google Scholar 

  • North, B.B. (1975) Primary amines in California coastal waters: utilization by phytoplankton, Limnol. Oceanogr., 20: 20–27.

    Article  CAS  Google Scholar 

  • Novoselov, V.I., Krapivinskaya, L.D., and Fesenko, E.E. (1980) Molecular mechanisms of odor sensing. V. Some biochemical characteristics of the alanineous receptor from the olfactory epithelium of the skate Dasyatis pastinaca, Chem. Sens., 5: 195–203.

    Article  CAS  Google Scholar 

  • Ohno, T., Yoshii, K., and Kurihara, K. (1984) Multiple receptor types for amino acids in the carp olfactory cells revealed by quantitative cross-adaptation model, Brain Res., 310: 13–21.

    Article  PubMed  CAS  Google Scholar 

  • Pocklington, R. (1972) Determination of nanomolar quantities of free amino acids dissolved in North Atlantic ocean waters, Analyt. Biochem., 45: 403–421.

    Article  PubMed  CAS  Google Scholar 

  • Pyatkina, G.A. (1976) Receptor cells of various types and their proportional interrelation in the olfactory organ of larvae and adults of acipenserid fishes (in Russian with English summary), Tsitol., 18: 1444–1449.

    Google Scholar 

  • Raderman-Little, R (1979) The effect of temperature on the turnover of taste bud cells in catfish, Cell Tissue Kinet., 12: 269–280.

    PubMed  CAS  Google Scholar 

  • Reese, T.S. and Brightman, M.W. (1970) Olfactory surface and central olfactory connections in some vertebrates, in Taste and Smell in Vertebrates, Ciba Foundation Symposium, Wolstenholme, G.E.W. and Knight, J. (eds.), Churchill, London, pp. 115–143.

    Google Scholar 

  • Reutter, K. (1971) Die Geschmacksknospen des Zwergwelses Amiurus nebulosus (Lesueur). Morphologische und histochemische Untersuchungen, Z. Zellforsch, Mikrosk. Anat., 120: 280–308.

    Article  CAS  Google Scholar 

  • Reutter, K. (1974) Cholinergic innervation of scattered sensory cells in fish epidermis, Cell Tissue Res., 149: 143–146.

    Article  PubMed  CAS  Google Scholar 

  • Reutter, K. (1978) Taste organ in the bullhead (Teleostei), Adv. Anat. Embryol. Cell Biol., 55: 1–98.

    Google Scholar 

  • Reutter, K. (1980) SEM-study of the mucus layer on the receptor field of fish taste buds, in Olfaction and Taste VII, van der Starre, H. (ed.), IRL Press, Washington, D.C., p. 107.

    Google Scholar 

  • Reutter, K. (1982) Taste organ in the barbel of the bullhead, in Chemoreception in Fishes, Hara, T.J. (ed.), Elsevier, New York, pp. 77–91.

    Google Scholar 

  • Rhein, L.D. and Cagan, R.H. (1983) Biochemical studies of olfaction: binding specificity of odorants to a cilia preparation from rainbow trout olfactory rosettes, J. Neurochem., 41: 569–577.

    Article  PubMed  CAS  Google Scholar 

  • Rifkin, B. and Bartoshuk, L.M. (1980) Taste synergism between monosodium glutamate and disodium 5’-guanylate, Physiol. Behav., 24: 1169–1172.

    Article  PubMed  CAS  Google Scholar 

  • Roper, S. (1983) Regenerative impulses in taste cells, Science, 220: 1311–1312.

    Article  PubMed  CAS  Google Scholar 

  • Roper, S., and McPheeters, S.M. (1984) Chemosensory stimulation in mudpuppy: KCl evokes impulses in taste cells, Assoc. Chemorecept. Sci. Abst., 6: 10.

    Google Scholar 

  • Rowley, J.C. and Moran, D.T. (1985) HRP applied to transected trout olfactory nerve fills ciliated receptors, microvillar receptors and some basal cells, Assoc. Chemorecept. Sci. Abst., 7: 157.

    Google Scholar 

  • Schulte, E. (1972) Studies of the regio olfactoria in the eel, Anguilla anguilla, Z. Zellforsch, Mikrosk. Anat., 125: 210–228.

    Article  CAS  Google Scholar 

  • Selset, R. and Døving, K.B. (1980) Behavior of mature anadromous char (Salmo alpinus L) towards odorants produced by smolts of their own population, Acta Physiol. Scand., 108: 113–122.

    Article  PubMed  CAS  Google Scholar 

  • Sheldon, R.E. (1909) The reactions of the dogfish to chemical stimuli, J. Comp. Neurol. Psychol., 19: 273–311.

    Article  Google Scholar 

  • Silver, W.L. (1982) Electrophysiological responses from peripheral olfactory system of the American eel, Anguilla rostrata, J. Comp. Physiol., 148: 379–388.

    Article  CAS  Google Scholar 

  • Silver, W.L. and Finger, T.E. (1984) Electrophysiological examination of a non-olfactory, non-gustatory chemosense in the sea robin, Prionotus carolinsus, J. Comp. Physiol., 154: 167–174.

    Article  Google Scholar 

  • Silver, W.L. and Maruniak, J.A. (1981) Trigeminal chemoreception in the nasal and oral cavities, Chem. Sens., 6: 295–305.

    Article  Google Scholar 

  • Stabell, O.B. and Selset, R. (1980) Comparison of mucus collecting methods in fish olfaction, Acta Physiol. Scand., 108: 91–96.

    Article  PubMed  CAS  Google Scholar 

  • Sutterlin, A.M. and Sutterlin, N. (1970) Taste responses in Atlantic salmon (Salmo salar) parr, J. Fish Res. Board Can., 27: 1927–1942.

    Article  Google Scholar 

  • Suzuki, N. (1977) Intracellular responses of lamprey olfactory receptors to current and chemical stimulation, in Food Intake and Chemical Senses, Katjuki, Y., Sato, M., Takagi, S.F., and Oomura, Y. (eds.), University of Tokyo Press. Tokyo, pp. 13–22.

    Google Scholar 

  • Suzuki, N. (1978) Effects of different ionic environments on the responses of single olfactory receptors in the lamprey, Comp. Biochem. Physiol., 61A: 461–467.

    CAS  Google Scholar 

  • Suzuki, N. (1980) Binding activities of radioactively labeled amino acids to the lamprey olfactory tissue and its fractions, in Proceedings of the 14th Japanese Symposium on Taste and Smell, Tomota, H. (ed.), pp. 33–36.

    Google Scholar 

  • Suzuki, N. (1982) Responses of olfactory receptor cells to electrical and chemical stimulation, in Chemoreception in Fishes, Hara, T.J. (ed.), Elsevier, New York, pp. 93–100.

    Google Scholar 

  • Teeter, J. (1974) Electrical properties of taste bud cells and surrounding epithelial cells in catfish and mudpuppies, Ph.D. Thesis, University of Pennsylvania, Philadelphia.

    Google Scholar 

  • Teichman, H. (1954) Vergleichende Untersuchungen an der Nase der Fische 2, Morphol. Okol. Tiere., 43: 171–212.

    Article  Google Scholar 

  • Tester, A.L. (1963) Olfaction, gustation and the common chemical sense in sharks, in Sharks and Survival, Gilbert, P.W. (ed.), Heath, Boston, pp. 255–282.

    Google Scholar 

  • Theisen, B., Breuker, H., Zeiske, E., and Melinkat, R. (1980) Structure and development of the olfactory organ in the garfish Belone belone (L.) (Teleostei, Atheriniformes), Acta Zool., 61: 161–170.

    Google Scholar 

  • Thommesen, G. (1982) Specificity and distribution of receptor cells in the olfactory mucosa of the char (Salmo alpinus), Acta Physiol. Scand., 115: 47–56.

    Article  PubMed  CAS  Google Scholar 

  • Thommesen, G. (1983) Morphology, distribution, and specificity of olfactory receptor cells in salmonid fishes, Acta Physiol. Scand., 117: 241–250.

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima, K., Nada, O., and Shimamura, A. (1984) Fine structure of monoamine containing basal cells in the taste buds on the barbels of three species of teleosts, Cell Tissue Res., 235: 479–484.

    Article  PubMed  CAS  Google Scholar 

  • Tucker, D. (1983) Fish chemoreception: peripheral anatomy and physiology, in Fish Neurobiology: Brainstem and Sense Organs, Vol. I, Northcutt, R.G., and Davis, R.E. (eds.), University of Michigan Press, Ann Arbor, pp. 311–349.

    Google Scholar 

  • Uskova, Y.T. and Chaykovskaya, A.V. (1971) The amino acid content of mucus from the skin of various marine fishes, Hydrobiologia, J7: 79–80.

    Google Scholar 

  • Yamamoto, M. (1982) Comparative morphology of the peripheral olfactory organ in teleosts, in Chemoreception in Fishes, Hara, T.J. (ed.), Elsevier, New York, pp. 39–59.

    Google Scholar 

  • Yoshii, K. and Kurihara, K. (1983a) Role of cations in olfactory reception, Brain Res., 274: 239–248.

    Article  PubMed  CAS  Google Scholar 

  • Yoshii, K. and Kurihara, K. (1983b) Ion dependence of the eel taste response to amino acids, Brain Res., 280: 63–67.

    Article  PubMed  CAS  Google Scholar 

  • Yoshii, K., Kamo, N., Kurihara, K., and Kobatake, Y. (1979) Gustatory responses of eel palatine receptors to amino acids and carboxylic acids, J. Gen. Physiol., 74: 301–317.

    Article  PubMed  CAS  Google Scholar 

  • Zeiske, E., Caprio, J., and Gruber, S.H. (1986) Morphological and electrophysiological studies on the olfactory organ of the lemon shark, Negaprion brevirostris. (Poey) (Elasmobranchii: Carcharhinidae), in Second International Conference on Indo-Pacific Fishes, Uyeno, T., Arai, R., Taniuchi, T., and Matsuura, K. (eds.), The Ichthyological Society of Japan, Tokyo, pp. 381–391.

    Google Scholar 

  • Zeiske, E., Melinkat, R., Breucker, H., and Kux, J. (1976) Ultrastructural studies on the epithelia of the olfactory organ of cyprinodonts (Teleostei, Cyprinodontoidea), Cell Tissue Res., 172: 245–267.

    Article  PubMed  CAS  Google Scholar 

  • Zimmer-Faust, R.K., Tyre, J.E., Michel, W.C., and Case, J.F. (1984) Chemical mediation of appetitive feeding in a marine decapod crustacean: the importance of suppression and synergism, Biol. Bull., 167: 339–353.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this paper

Cite this paper

Caprio, J. (1988). Peripheral Filters and Chemoreceptor Cells in Fishes. In: Atema, J., Fay, R.R., Popper, A.N., Tavolga, W.N. (eds) Sensory Biology of Aquatic Animals. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3714-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3714-3_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8317-1

  • Online ISBN: 978-1-4612-3714-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics