Skip to main content

Effective estimates of exponential sums over primes

  • Chapter
Analytic Number Theory

Part of the book series: Progress in Mathematics ((PM,volume 138))

Abstract

The asymptotic behavior of the sum

$$S(x,\alpha ) = \sum\limits_{n \leqslant x} {\pi (n)e(n\alpha ),}$$

where α is real, e(α) = e2πiα, and Λ is the von Mangoldt function, has been extensively studied by many authors. It plays a central role in Vinogradov’s solution of the 3-primes conjecture [10]. It is also a main tool in the study of the equidistribution of the sequence {, p prime} modulo 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Daboussi, On a convolution method, Congreso de teoria de los números, Universidad del Pais Vasco (1984), 110–138.

    Google Scholar 

  2. H. Davenport, Multiplicative Number Theory, Springer Verlag, New York 1980.

    MATH  Google Scholar 

  3. F. Dress, H. Iwaniec, G. Tenenbaum Sur une somme liée á la fonction de Möbius, J. Reine Angew. Math 340 (1983), 53–58.

    Article  MATH  MathSciNet  Google Scholar 

  4. H. Halberstam and H.–E. Richert, Sieve Methods, Academic Press, London 1974.

    MATH  Google Scholar 

  5. A. Page, On the number of primes in an arithmetic progression, Proc. London Math. Soc. 39 (2) (1935), 116–141.

    Article  Google Scholar 

  6. K. Prachar, Primzahlverteilung, Springer-Verlag, Berlin 1957.

    MATH  Google Scholar 

  7. C. L. Siegel, Über die Klassenzahl quadratischer Körper, Acta Arithmetica 1 (1936), 83–86.

    Google Scholar 

  8. G. Tenenbaum, Introduction à la théorie analytique et probabiliste desnombres, Revue de l’Institut Elie Cartan 13 (1990), Université de Nancy I.

    Google Scholar 

  9. R. Vaughan, Sommes trigonométriques sur les nombres premiers, C. R. Acad. Sci. Paris, Sér A 285 (1977), 981–983.

    MATH  MathSciNet  Google Scholar 

  10. I. M. Vinogradov, The method of trigonometrical sums in the theory of numbers, Interscience Publ., London (1954).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Daboussi, H. (1996). Effective estimates of exponential sums over primes. In: Berndt, B.C., Diamond, H.G., Hildebrand, A.J. (eds) Analytic Number Theory. Progress in Mathematics, vol 138. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4086-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4086-0_13

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8645-5

  • Online ISBN: 978-1-4612-4086-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics