Skip to main content

Congruences for Fourier coefficients of half-integral weight modular forms and special values of L-functions

  • Chapter
Analytic Number Theory

Part of the book series: Progress in Mathematics ((PM,volume 138))

Abstract

Congruences for Fourier coefficients of integer weight modular forms have been the focal point of a number of investigations. In this note we shall exhibit congruences for Fourier coefficients of a slightly different type. Let

$$ f(z)\, = \,\sum\nolimits_{n = 0}^\infty {a(n)q^n } $$

be a holomorphic half integer weight modular form with integer coefficients. If ℓ is prime, then we shall be interested in congruences of the form

$$ a(lN)\, \equiv \,0\,\bmod \,l $$

where N is any quadratic residue (resp. non-residue) modulo . For every prime > 3 we exhibit a natural holomorphic weight

$$ \frac{l} {2}\, + \,1 $$

modular form whose coefficients satisfy the congruence a(ℓN) ≡ 0 mod for every N satisfying

$$ \left( {\frac{{ - N}} {l}} \right)\, = \,1 $$

. This is proved by using the fact that the Fourier coefficients of these forms are essentially the special values of real Dirichlet L—series evaluated at

$$ s\, = \,\left( {\frac{{1 - l}} {2}} \right) $$

which are expressed as generalized Bernoulli numbers whose numerators we show are multiples of . From the works of Carlitz and Leopoldt, one can deduce that the Fourier coefficients of these forms are almost always a multiple of the denominator of suitable Bernoulli numbers. Using these examples as a template, we establish sufficient conditions for which the Fourier coefficients of a half integer weight modular form are almost always divisible by a given positive integer M.

We also present two more examples of half-integer weight forms with such congruence properties, whose coefficients are determined by the special values at the center of the critical strip for the quadratic twists of the modular L- functions associated to the modular form Δ of weight 12 and level 1, and to the unique form η 8(z8(2z) of weight 8 and level 2. We suggest a conceptual explanation for these congruences by remarking that the twists of the mod p Galois representations (p = 11 and 7 respectively) associated to these two forms are isomorphic to the Galois representations associated to certain elliptic curves of odd analytic rank.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Andrews, The theory of partitions, Addison-Wesley, 1976.

    MATH  Google Scholar 

  2. A.Biagioli, The construction of modular forms as products of transforms of the Dedekind Eta function, Acta. Arith. 54 (1990), 273–300.

    MathSciNet  MATH  Google Scholar 

  3. S. Bloch, K. Kato, L-functions and Tamagawa numbers of motives, The Grothendieck festschrift, vol. 1, Birkhäuser, 1990.

    Google Scholar 

  4. L. Carlitz, Arithmetic properties of generalized Bernoulli numbers, J. Reine und Angew. Math. 201–202 (1959), 173–182.

    Google Scholar 

  5. H. Cohen, Sums involving the values at negative integers of L—functions of quadratic characters, Math. Ann. 217 (1975), 271–285.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Deligne, Valeurs speciales de fonctions L et periodes d’integrales, Proc. Symp. Pure Math., Corvallis Proceedings, 33 2 (1979), 313–346.

    Google Scholar 

  7. D. Eichhorn and K. Ono, Partition function congruences, appearing in this volume.

    Google Scholar 

  8. B. Gordon, private communication.

    Google Scholar 

  9. B. Gross and D. Zagier, Heegner points and derivatives of L-series, Inv. Math. 84 (1986), 225–320.

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Ireland and M. Rosen, A classical introduction to modern number theory, Springer-Verlag, 1982.

    MATH  Google Scholar 

  11. K. Iwasawa, Lectures on p—adic L—functions, Princeton Univ. Press, 1972.

    MATH  Google Scholar 

  12. M. Knopp, Modular functions in analytic number theory, Markham, 1970.

    MATH  Google Scholar 

  13. N. Koblitz, Introduction to elliptic curves and modular forms, Springer-Verlag, 1984.

    Google Scholar 

  14. W. Kohnen and D. Zagier, Values of L—series of modular forms at the center of the critical strip, Invent. Math. 64 (1981), 173–198.

    Article  MathSciNet  Google Scholar 

  15. H. Leopoldt, Eine verallgemeinerung der Bernoullischen zahlen, Abh. Math. Sem. Univ. Hamburg 22 (1958), 131–140.

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Mazur, On the arithmetic of special values of L-functions, Invent. Math. 55 (1979), 207–240.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Ramanujan, Congruence properties of partitions, Proc. London Math. Soc. (2) 18 (1920), 19–20.

    Google Scholar 

  18. K. Rubin, Congruences for special values of L—functions of elliptic curves with complex multiplication, Invent. Math. 71 (1983), 339–364.

    Article  MathSciNet  MATH  Google Scholar 

  19. J.-P. Serre and H. Stark, Modular forms of weight ½, Springer Lect. Notes Math. 627 (1977), 27–68.

    Article  MathSciNet  Google Scholar 

  20. J-P. Serre, Abelian l-adic representations and elliptic curves, Addison-Wesley, 1988.

    Google Scholar 

  21. J-P. Serre, Congruences ét formes modulaires (d’après H.P.F. Swinnerton-Dyer), Seminaire Bourbaki 416 (1971).

    Google Scholar 

  22. J-P. Serre, Divisibilité des coefficients des formes modulaires, C.R. Acad. Sci. Paris (A) 279 (1974), 679–682.

    MATH  Google Scholar 

  23. G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton Univ. Press, 1971.

    MATH  Google Scholar 

  24. G. Shimura, On modular forms of half-integral weight, Ann. Math. 97 (1973), 440–481.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Sturm, On the congruence of modular forms, Springer Lect. Notes Math. 1240 (1984).

    Google Scholar 

  26. H.P.F. Swinnerton-Dyer, On ℓ-adic representations and congruences for coefficients of modular forms, Springer Lect. Notes Math. 350 (1973).

    Google Scholar 

  27. J.L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures et Appi. 60 (1981), 375–484.

    MathSciNet  MATH  Google Scholar 

  28. L. Washington, Introduction to cyclotomic fields, Springer-Verlag, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Balog, A., Darmon, H., Ono, K. (1996). Congruences for Fourier coefficients of half-integral weight modular forms and special values of L-functions. In: Berndt, B.C., Diamond, H.G., Hildebrand, A.J. (eds) Analytic Number Theory. Progress in Mathematics, vol 138. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4086-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4086-0_5

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8645-5

  • Online ISBN: 978-1-4612-4086-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics