Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 158))

Abstract

For more than forty years the study of homogeneous holomorphic vector bundles has resulted in an important source of irreducible unitary representations for a real reductive Lie group. In the mid 1950s, Harish-Chandra realized a family of irreducible unitary representations for some semisimple groups, using the global sections of homogeneous bundles defined over Hermitian symmetric spaces [6]. At about the same time Borel and Weil constructed the irreducible representations for a connected compact Lie group as global sections of line bundles defined over complex projective homogeneous spaces [3]. More than ten years later, W. Schmid in his thesis solved a conjecture by Langlands and generalized the Borel-Weil-Bott theorem to realize discrete series representations for noncompact semisimple groups [16]. This extension is nontrivial for one thing because it requires an understanding of the representations obtained on some infinite-dimensional sheaf cohomology groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Beilinson and J. Bernstein, Localization de g modules, C.R. Acad. Sci. Paris, 292 (1981), pp. 15–18.

    MathSciNet  MATH  Google Scholar 

  2. A. Borel, ET AL., Algebraic D-Modules, no. 2 in Perspectives in Mathematics, Academic Press, Inc., 1987.

    Google Scholar 

  3. R. Bott, Homogeneous vector bundles, Ann. of Math., 66 (1957), pp. 203–248.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. bratten, Realizing representations on generalized flag manifolds, Preprint, (1995). to appear in Compositio Math.

    Google Scholar 

  5. J. chang, Special K-types, tempered characters and the Beilinson-Bemstein realization, Duke Math. J., 56 (1988), pp. 345–383.

    Article  MathSciNet  MATH  Google Scholar 

  6. Harish-Chandra, Representations of semisimple Lie groups VI, Amer. J Math., 78 (1956), pp. 564–628.

    Article  MathSciNet  MATH  Google Scholar 

  7. ———, Harmonic analysis on real reductive groups I, J. Func. Anal., 19 (1975), pp. 104–204.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. hecht and J. taylor, Analytic localization of group representations, Advances in Math., 79 (1990), pp. 139–212.

    Article  MathSciNet  MATH  Google Scholar 

  9. ———, A comparison theorem for n homology, Composito Math., 86 (1993), pp. 189–207.

    MathSciNet  MATH  Google Scholar 

  10. H. Hecht, D. Mil, W. Schmid and J. A. Wolf, Localization and standard modules for semisimle Lie groups I: the duality theorem, Invent. Math., 90 (1987), pp. 297–332.

    MATH  Google Scholar 

  11. M. kashiwara and W. schmid, Quasi-equivariant V-modules, equivariant derived category and representations of reductive Lie groups, Research anouncement, Research Institute for Mathematical Sciences, Kyoto University (1994).

    Google Scholar 

  12. A. Knapp, Representation Theory of Semisimple Groups, Princeton University Press, 1986.

    MATH  Google Scholar 

  13. T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan, 31 (1979), pp. 331–357.

    Article  MathSciNet  MATH  Google Scholar 

  14. ———, Orbits on affine symmetric spaces under the action of parabolic subgroups, Hiroshima Math. J., 12 (1982), pp. 307–320.

    MathSciNet  MATH  Google Scholar 

  15. W. schmid, Boundary value problems for group invariant differential equations, Proc. Cartan Symposium, Astérique, (1985).

    Google Scholar 

  16. ———, Homogeneous complex manifolds and representations of semisimple Lie groups, in Representation Theory and Harmonic Analysis on Semisimple Lie Groups, no. 31 in Math. Surveys and Monographs, Amer. Math. Soc., 1989.

    Google Scholar 

  17. W. schmid and J. A. wolf, Geometric quantization and derived functor modules for semisimple Lie groups, J. Func. Anal., 90 (1990), pp. 48–112.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Serre, Un théoréme de dualité, Comment. Math. Helv., 29 (1955), pp. 9–26.

    Article  MATH  Google Scholar 

  19. D. Vogan, Unitarizability of certain series of representations, Ann. of Math., 120 (1984), pp. 141–187.

    Article  MathSciNet  MATH  Google Scholar 

  20. ———, Unitary Representations of Reductive Lie Groups, no. 118 in Annals of Math. Studies, Princeton Univ. Press, 1987.

    Google Scholar 

  21. J. A. Wolf, The action of a real semi-simple group on a complex flag manifold, I: orbit structure and holomorphic arc components, Bull. Amer. Math. Soc., 75 (1969), pp. 1121–1237.

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Wong, Dolbeault cohomologies associated with finite rank representations, Ph.D thesis, Harvard University, (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Birkhäuser Boston

About this chapter

Cite this chapter

Bratten, T. (1998). Finite Rank Homogeneous Holomorphic Bundles in Flag Spaces. In: Tirao, J., Vogan, D.A., Wolf, J.A. (eds) Geometry and Representation Theory of Real and p-adic groups. Progress in Mathematics, vol 158. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4162-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4162-1_2

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8681-3

  • Online ISBN: 978-1-4612-4162-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics