Skip to main content

An Optimality Condition for Approximate Inertial Manifolds

  • Conference paper
Turbulence in Fluid Flows

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 55))

Abstract

In this paper, we present a basic theoretical framework for interpreting essentially all known methods for constructing approximate inertial manifolds for any of a large class of nonlinear evolutionary equations. This class includes the 2D Navier-Stokes equations and many systems of reaction diffusion equations. We prove that, under reasonable assumptions, every approximate inertial manifold for a given equation is an actual inertial manifold of an approximate equation. This new theoretical framework allows one to introduce certain optimality conditions for approximate inertial manifolds. Finally we introduce a new method, the Gamma Method, for the construction of approximate inertial manifolds.

This research was supported in part by grants from the National Science Foundation, the Applied Mathematics and Computational Mathematics Program/DARPA, and the U. S. Army.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • P. Constantin and C. Foias(1988), Navier-Stokes Equations, Univ. Chicago Press, Chicago.

    MATH  Google Scholar 

  • D. E. Edmunds and W. D. Evans (1987), Spectral Theory and Differential Operators, Oxford Math. Monographs.

    Google Scholar 

  • E. Fabes, M. Luskin and G. R. Sell (1991), Construction of inertial manifolds by elliptic regularization, IMA Preprint No. 459, J. Differential Equations, (to appear).

    Google Scholar 

  • N. Fenichel (1971), Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21, pp. 193–226.

    Article  MathSciNet  MATH  Google Scholar 

  • C. Foias, M. S. Jolly, I. G. Kevrekidis, G. R. Sell, E. S. Titi (1988), On the computation of inertial manifolds, Physics Letters A, 131, pp. 433–436.

    Article  MathSciNet  Google Scholar 

  • C. Foias, O. Manley, and R. Temam (1988), Modelling of the interaction of small and large eddies in two dimensional turbulent flows, Math. Modelling Numerical Anal., 22, pp. 93–118.

    MathSciNet  MATH  Google Scholar 

  • C. Foias, B. Nicolaenko, G. R. Sell, and R. Temam (1988), Inertial manifolds for the Kuramoto Sivashinsky equation and an estimate of their lowest dimensions, J. Math. Pures Appl., 67, pp. 197–226.

    MathSciNet  MATH  Google Scholar 

  • C. Foias, G. R. Sell and R. Temam (1988), Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations, 73, pp. 309–353.

    Article  MathSciNet  MATH  Google Scholar 

  • C. Foias, G. R. Sell and E. S. Titi (1989), Exponential tracking and approximation of inertial manifolds for dissipative equations, J. Dynamics and Differential Equations, 1, pp. 199–244.

    Article  MathSciNet  MATH  Google Scholar 

  • C. Foias and R. Temam (1988), The algebraic approximation of attractors: The finite dimensional case, Physica D, 32, pp. 163–182.

    Article  MathSciNet  MATH  Google Scholar 

  • J. K. Hale (1988), Asymptotic Behavior of Dissipative Systems, Math. Surveys and Mono-graphs, Vol. 25, Amer. Math. Soc., Providence, R. I..

    Google Scholar 

  • D. B. Henry (1981), Geometric Theory of Sernilinear Parabolic Equations, Lecture Notes in Mathematics, No. 840, Springer Verlag, New York.

    Google Scholar 

  • M. S. Jolly, I. G. Kevrekidis, and E. S. Titi (1989), Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: Analysis and computations, MSI Technical Report 89-52, Cornell Univ.

    Google Scholar 

  • O. A. Ladyzhenskaya (1972), On the dynamical system generated by the Navier-Stokes equations, English translation, J. Soviet Math., 3, pp. 458–479.

    Article  Google Scholar 

  • M. Luskin and G. R. Sell (1988), Approximation theories for inertial manifolds, Proc. Luminy Conference on Dynamical Systems, Math. Modelling Numerical Anal., 23.

    Google Scholar 

  • J. Mallet-Paret and G. R. Sell (1988), Inertial manifolds for reaction diffusion equations in higher space dimensions, J. Amer. Math. Soc., 1, pp. 805–866.

    Article  MathSciNet  Google Scholar 

  • J. Mallet-Paret, G. R. Sell, and Z. Shao (1991), Counterexamples to the existence of inertial manifolds, In preparation.

    Google Scholar 

  • M. Marion (1989a), Approximate inertial manifolds for reaction diffusion equations in high space dimension, J. Dynamics and Differential Equations, 1, pp. 245–267.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Marion (1989b), Approximate inertial manifolds for the pattern formation in the Cahn-Hilliard equation, Proc. Luminy Conference on Dynamical Systems, Math. Modelling Numerical Anal., 23, pp. 463–488.

    MathSciNet  MATH  Google Scholar 

  • M. Marion and R. Temam (1989), Nonlinear Galerkin methods, SIAM J. Numerical Anal., 26, pp. 1139–1157.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Marion and R. Temam (1990), Nonlinear Galerkin methods: The finite elements case, Numerische Math., 57, pp. 205–226.

    Article  MathSciNet  MATH  Google Scholar 

  • V. A. Pliss (1977), Integral Sets of Periodic Systems of Differential Equations, Russian, Izdat. Nauka, Moscow.

    MATH  Google Scholar 

  • V. A. Pliss and G. R. Sell (1990), Perturbations of attractors of differential equations, IMA Preprint No. 680, J. Differential Equations(to appear).

    Google Scholar 

  • G. Raugel and G. R. Sell (1990), Navier-Stokes equations in thin 3D domains: Global regularity of solutions I, IMA Preprint No. 662.

    Google Scholar 

  • R. J. Sacker (1969), A perturbation theorem for invariant manifolds and Hölder continuity, J. Math. Mech., 18, pp. 705–762.

    MathSciNet  MATH  Google Scholar 

  • G. R. Sell (1989), Hausdorff and Lyapunov dimensions for gradient systems, in The Connection between Infinite Dimensional and Finite Dimensional Dynamical Systems, Contemporary Mathematics, Vol. 99, pp. 85–92.

    Google Scholar 

  • R. Temam (1977), Navier-Stokes Equations, North-Holland, Amsterdam.

    MATH  Google Scholar 

  • R. Temam (1983), Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS Regional Conference Series, No. 41, SIAM, Philadelphia.

    Google Scholar 

  • R. Temam (1988), Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer Verlag, New York.

    MATH  Google Scholar 

  • R. Temam (1989), Attractors for the Navier-Stokes equations: Localization and approximation, J. Faculty Sci. Tokyo, Sec 1A, 36, pp. 629–647.

    MathSciNet  MATH  Google Scholar 

  • E. S. Titi (1990), On approximate inertial manifolds to the 2D Navier-Stokes equations, J. Math. Anal. Appl., 149, pp. 540–557.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Sell, G.R. (1993). An Optimality Condition for Approximate Inertial Manifolds. In: Sell, G.R., Foias, C., Temam, R. (eds) Turbulence in Fluid Flows. The IMA Volumes in Mathematics and its Applications, vol 55. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4346-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4346-5_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8743-8

  • Online ISBN: 978-1-4612-4346-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics